
Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3372

A NEAR OPTIMAL MULTICAST SCHEME FOR MOBILE AD-
HOC NETWORKS – AN IMPLEMENTATION PERSPECTIVE

 MR. P ANIL KUMAR1 , Prof. CH KAVITHA2 , Prof. M BABURAO3 , Dr. CH SURESHBABU4

1Department of CSE, PVP Siddhartha Institute Of Technology, Vijayawada, Andhra Pradesh, India

2Department of IT, S R Gudlavalleru Engineering College, Gudlavalleru, Andhra Pradesh, India
3Department of CSE, S R Gudlavalleru Engineering College, Gudlavalleru, Andhra Pradesh, India

4Department of IT, S.R.Gudlavalleru Engineering College, Gudlavalleru, Andhra Pradesh, India

Email: 1anilkumar.pallikonda@gmail.com, 2kavithachaduvula12@gmail.com, 3baburaompd@gmail.com,
4dr.sureshbabuch@gmail.com

ABSTRACT

An ad-hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in
such a manner that the interconnections between nodes are capable of changing on a continual basis. The
primary goal of such an ad-hoc network routing protocol is correct and efficient route establishment
between a pair of nodes so that messages may be delivered in a timely manner.Multicasting is to send
single copy of a packet to all of those of clients that requested it, and not to send multiple copies of a packet
over the same portion of the network, nor to send packets to clients who don’t want it.The Adhoc
Multicast Routing Protocol (AMRoute) presents a novel approach for robust IP Multicast in mobile ad-
hoc networks by exploiting user-multicast trees and dynamic logical cores. It creates a bi-directional,
shared tree for data distribution using only group senders and receivers as tree nodes. Unicast tunnels are
used as tree links to connect neighbors on the User-multicast tree. Thus AMRoute does not need to be
supported by network nodes that are not interested/capable of multicast, and group State Cost is incurred
only by group senders and receivers. Also, the use of tunnels as tree links implies that tree structure does
not need to change even in case of a dynamic network topology, which reduces the signaling traffic and
packet loss. Thus AMRoute does not need to track network dynamics; the underlying Unicast protocol is
solely responsible for this function. AMRoute does not require a specific Unicast routing protocol;
therefore, it can operate seamlessly over separate domains with different Unicast protocols. We have tried
to overcome the transient loops in the mesh creation. Also we have implemented the Dynamic core
migration technique by using a timer which periodically changes the current core node, so that the
efficiency of the protocol can be improved.

Keywords: Adhoc, Multicast, AMRoute, Multicast Tree

1. INTRODUCTION:
 Networking has stormed the world today
with its multi-faceted applications. Communication
today has reached great heights with the help of
Networking.

1.1 Types of Network

Networks can be broadly classified into
two types depending on the type of connectivity.
1.1.1 Wired Networks:

As the name implies the various terminals
of the wired network are connected together with a
wire. Thus data is transferred through this
physically existing wire links.

1.1.2 Wireless Networks:
These are networks that do not have a

physical (namely a wire) connection between the
various terminals. Wireless networks find their
importance in those areas where it is difficult to
establish a connection through a wire. This was the
initial motive behind the development of wireless
networks. But once the flexibility and advantages
were realized these networks started ruling the
world. The basic reason is the ability to
communicate without any physical connection.
Wireless networks can be further classified into two
types.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3373

1.2 Infrastructure Wireless Network
This is the traditional cellular network

model that supports the current mobile computing
needs by installing base stations and access points.
In such networks, communications between two
mobile hosts completely rely on the wired
backbone and the fixed base stations. A typical
infrastructured network is shown in the figure.

FIGURE 1.1 Infrastructured Network.
1.3 Infrastructureless Networks or ADHOC
Networks:

In Ad Hoc wireless networks, there exists
no base stations and each mobile host is smart
enough to act as a router to forward packets from
one to the other until the packet reaches its
destination. The intelligent communications
software enable these mobile computers and
devices to form and deform networks on the fly, in
real-time.

FIGURE 1.2 Infrastructureless Networks ADHOC

Networks

Ad Hoc networks are highly dynamic in nature
since they can form and deform quickly, without
the need for any infrastructure setup and system
administration. They can be deployed anytime and
anywhere (indoors and outdoors), be it battlefields
or conference rooms.

1.4 Multicasting in Ad Hoc Networks:
Multicast is a type of communication used

for communicating between groups of computers,
as opposed to unicast, which is intended for
communication between pairs of computers. In a
typical ad hoc environment, network hosts work in
groups to carry out a given task. Hence, multicast
plays an important role in ad hoc networks. The
main advantage of multicasting is that a sender only
needs to send the data once so that significant
resources (e.g., network transmission bandwidth)
can be saved. The following functions are to be
performed.

1. Sender sends each set of data only once.
2. Receiver can participate in the multicast at

any time by joining the multicast group
and receiving the sent packets.

To support multicasting, routers within the
networks need to maintain much information such
as

1. Membership for each multicast group.
2. Input/output ports for each multicast

group so as to perform packet forwarding.
3. Packet error recovery within a multicast

group.

1.5 Multicast Protocols:
 Existing multicast protocols do not work
well in ad hoc networks as the frequent tree
reorganization can cause excessive signaling
overhead and frequent loss of datagrams. Hence
there is a need to develop a separate multicasting
protocol for Ad-Hoc networks.
There are two categories of Multicast protocol
1.5.1 Proactive Protocol:

These algorithms maintain a route to the
destination much like the traditional fixed
networks. When the packet is to be transmitted it
just picks up a root from the cache and uses it. This
leads to the instant transmission of the first packet,
but the nodes have to work hard in the background
wasting precious radio resources.
E.g.: AMRoute – Ad-Hoc Multicast Routing
Protocol
1.5.2 Reactive Protocol:

As the name suggests these types of
algorithm try to evolve the route to the destination
only when they need it to transmit a data packet to
the destination. Usually a route discovery phase
proceeds the actual send phase. This on the fly
reaction may take a long time for transmission of
the first packet, but is efficient in terms of the data
packet to routing control packet ration saving
battery power in the mobile nodes.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3374

E.g.: AODV – Ad-Hoc On demand Distant Vector
Protocol.

In our project we analyze the AMRoute
protocol and study the various characteristics of the
protocol.
1.6. Goal of the work

To perform multicast routing in ad hoc
networks .
1.6.1 Problem Identification

Existing multicast protocols do not work
well in ad hoc networks as the frequent tree
reorganization can cause excessive signaling
overhead and frequent loss of datagram and core
node is not identified to pass the segment.
1.6.2 Problem Solution

Finding the core node, each message will
be sent by segments. Message Queues are used to
establish Inter Process Communication (IPC
CALLS).

1.7 Applications of Ad Hoc Networks:

 Emergency search-and-rescue operations.
 Meetings or conventions in which persons

wish to quickly share information.
 Data acquisition operations in inhospitable

terrain.
 Local area networks in the future.

2. WORK DESCRIPTION

2.1 Algorithm
 A mesh is created between the members of the

group by a Mesh Creation technique, which
involves broadcasting a Control Packet to
identify the members of the Group. This is an “
Expanded Ring Search” algorithm.

 Each of the mesh created consists of a Logical
Core node, which is responsible for
maintaining the tree and its members. The core
is selected by using a “Core Resolution”
algorithm.

 Once a Mesh is created a User Multicast Tree
is built from it. This tree is formed in such a
way that the nodes of the tree are the members
of the group.

 The next step is to maintain the Tree created.
This is done by periodically sending a message
to all the members of the group. The core node
is responsible for sending this packet. It
maintains a TREE_CREATE_TIMER.
 To improve the efficiency of the AMRoute

protocol a Core Migration technique is
used in our algorithm. A new core is being
elected periodically so that the core

migrates and thereby the tree is maintained
effectively.

 A description of each of the above steps is given in
detail in the following pages.

2.1.1 Expanding Ring Search Algorithm
 This algorithm is used to find out the
members of a group in AMRoute. The members
found are logically linked to each other in the form
of a mesh. Hence each of the nodes in the mesh can
be identified as the neighboring node.
The algorithm can be explained as follows:
 An expanding ring search works by
searching larger areas, centered around the source
node, until a node with a route to the destination is
located. The basic premise behind the expanding
ring search is to find some local node with a route
to the destination and thereby avoid flooding the
entire network in search of a route. Using an
expanding ring search, the initial JOIN_REQ has a
small time to live (TTL) i.e., two hops. Each time
the JOIN_REQ is rebroadcast, the sending node
decrements the TTL. Once the TTL reaches zero,
the JOIN_REQ is no longer forwarded. The source
node waits the discovery period for a JOIN_ACK
to be returned. If it has not received a JOIN_ACK
by the end of the discovery time, it initiates a new
JOIN_ACK with the TTL increased by an
increment. This process continues until a threshold
TTL value is reached. After this point, if no route
has been located the JOIN_REQ is flooded across
the network. The following figures illustrate
the expanding ring search algorithm. The shaded
nodes indicate nodes, which have a route to the
destination. In a larger network with more than that
illustrated the number of node undisturbed by the
request query would be likewise greater. When re-
discovering a route after a link break, the source
places the last known hop count to the destination
in the TTL is increased by the increment value. The
TTL is increased on each subsequent route
discovery attempt until the TTL threshold is
reached. After this point the JOIN_REQ is just
flooded to the entire network.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3375

FIGURE 2.1: Request of mesh=1

The above three figures illustrate the

Expanding Ring Search algorithm. In the first
figure the JOIN_REQ packet is transferred with a
TTL value of 1. Hence when the neighbors of the
source receive that packet they try to decrement the
value of TTL and rebroadcast it. But the value of
TTL becomes Zero after decrementing. Hence they
don’t forward the message. Meanwhile the source
waits till the discovery time. Once the timer expired
the source again transmits the JOIN_REQ message
incrementing the TTL value.
 The second figure illustrates the state with
a hop count of 3. With this hop count the
JOIN_REQ packet reaches the neighbors of the
destination node. Thus the destination node
receives the JOIN_REQ packet and it transmits the
JOIN_ACK packet. The third figure depicts the
route from source to destination.

The following section explains how a
mesh is actually created in the AM Route protocol.

FIGURE 2.2: Request of mesh=3

FIGURE 2.3: Path of request to source

2.2 Mesh creation

An AMRoute mesh is a graph where each
node is a member (sender or receiver) of the group
and every link is a bi-directional unicast tunnel.
While the mesh establishes connectivity across all
the members of a group, a tree is needed for
forwarding the data. We use a two step process of
creating a mesh before the tree because it is simpler
and more robust.
 A mesh is much simpler to maintain a
mesh (that could potentially have loops) than a tree
(with no loops) at every state of member mutual
discovery phase. For example, a very naive
merging algorithm could result in a loop when three
disjoint trees discover each other. In addition, the
redundant mesh links contribute towards increased
robustness in the case of node/link failures. (Note
that the use of unicast tunnels between neighboring
nodes of the mesh itself contributes towards
robustness in the face of intermediate node/link
failures along routes between them as the unicast
protocol is expected to establish a separate route
around the failed network node/link).

2.2.1 Periodic JOIN_REQ Broadcast
 To create a mesh encompassing all the
members (senders or receivers) of a specific group,
mechanisms are needed to allow members to
discover each other. The expanding ring search
mechanism based on TTL limited responds back
with a JOIN_ACK. A new bi-directional tunnel is
established between the core and the responding
node of the other mesh. As a consequence of mesh
mergers, a mesh will have multiple cores. One of
the cores will emerge as the “winning” core of the
unified mesh as a result of the core resolution
algorithm.
2.2.2 Becoming a Passive Non-core node
 Only logical core nodes initiate the discovery
of other disjoint meshes, while both core and non-
core nodes respond to the discovery messages. It is
simpler and more scalable (in bandwidth usage) to
have only the core node initiate discovery as

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3376

against every node of the mesh. However, to avoid
the situation where every merger adds a link to a
core (which might result in too many links from the
core), non-core nodes can participate in the mergers
by responding to discovery messages.
2.2.3 Leaving the group

 If a node leaves a group, they send out a
single JOIN-NAK message to their neighboring
nodes. If they subsequently receive any data or
signaling message for that group they can send out
further JOIN-NAK messages.
2.2.4 Limitation on link connectivity

 Whenever, the number of links adjacent to
a node exceeds LINK THRESHOLD, a node must
break one or more of its links. Each of the links
could be associated with a weight representing the
“distance” (example, a number of hops) from the
neighbor. The links chosen to be broken could be
the ones with the farthest neighbors. The farthest
neighbor is notified about the link breakage using a
JOIN-BAK message. If the message is lost and data
is received from this non-neighbor, the JOIN-NAK
message will be resent. Periodic mesh
reconfiguration is necessary to maintain a
reasonably optimal mesh in the face of mobility;
however, removing links may result in temporary
loss of data and additional overhead. When the
links are broken, the mesh might be fragmented
into disjoint meshes. Fragmentation is handled in
the same manner as node failures.
2.2.5 Dynamic Core Migration
 There might be a need for dynamically
migrating the logical core so as to make the tree
more optimal. If the core is “closer” to the senders,
then the tree may be a close approximation of a
source-based tree (which is shared). If the core is at
the “center” of the mesh, then TREE-CREATE
messages (described in the next section) reach all
the nodes of the mesh faster than when the core is
at the “edge”. In addition, as the core is involved in
discovering and merging with other disjoint
meshes, dynamically changing the core might help
in avoiding the situation where there are excessive
links adjacent to a core node. Policies and
mechanisms for node changes are still under
research.
2.3Core resolution Algorithm
 Before starting with the core resolution
algorithm, the operations performed by a core node
are explained. In the AMRoute protocol each group
has at least one logical core that is responsible for
initiating signaling actions, specifically:

 Mesh joins (discovering new group
members and disjoint mesh Segments) and

 Multicast tree creation.

 A non-core node cannot initiate these two
operations, acting only as a passive responding
agent. Limiting the number of nodes that perform
these two functions (ultimately to a single logical
core) ensures that AMRoute can scale, without
causing excessive signaling or processing overhead.
 An immediate reaction on hearing about using
core nodes is that “Yes, a core improves scalability
(as shown by CBT or PIM-SM, but it also causes
robustness problems in dynamic networks. “
However, the AMRoute logical core node is
different from a CBT core and PIM-SM RP in
several fundamental aspects. In particular, an
AMRoute core node:

 is not a central point for all data.
Forwarding can continue on working
branches of the tree irrespective of the
status of the logical core and links to the
logical core.

 Is not a preset node. Each multicast tree
segment designates one of its nodes o be
the core based on the “core resolution
algorithm”.

 Changes dynamically. The core node
migrates according to group membership
and network connectivity.

 The core resolution algorithm is run in a
distributed fashion by all nodes. The goal of the
algorithm is to ensure that any group segment has
exactly one core node and that the core node
migrates to maintain a robust and efficient multicast
tree.
 An AMRoute segment can temporarily have
more than one core node for group after new nodes
join or disjoint segment emerge together. A
network node designates itself as a core when first
joining a group. As a logical core a node can
quickly discover new group members and join the
mesh and tree with its closest neighbors (not just to
the existing core). When multiple core nodes exist
in a segment, they will advertise their presence by
sending out tree creation messages. Core nodes use
the reception of tree creation messages from other
cores to decide whether to remain as a core.
 An AMRoute segment can also have no
core nodes because the core node disappears (e.g.,
leaves the group) or an existing segment is split into
multiple disjoint segments (e.g., because of link or
node failure). If a segment does not have a core
node, one of the nodes will designate itself as the
core node at some random time, on not receiving
any join or tree creation messages.
 A key issue with any algorithm that
assigns a single core node is that it can centralize

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3377

the multicast tree and indeed the mesh links on
itself. AMRoute prevents centralization in a number
of ways:

 A non-core node is not allowed to graft to
its own logical core. Without this
limitation all group members would
ultimately be connected to the core.

 All nodes, including the core, are only
allowed to have a limited number of tree
links. If the limit is reached the node must
drop the link furthest (at highest cost) from
its current location.

 A logical core will only take responsibility

as core for a limited time or until some
event makes changing the core desirable.
A new logical core can be picked, for
example when the core’s mesh
connectivity limit is reached.

 Clearly the core resolution and change
algorithms are key to the robustness and
performance of the AMRoute protocol. However, it
is also desirable to contain the complexity of the
algorithms. Simulations are hence being planned to
determine the tradeoffs between simplicity,
robustness and efficiency.
2.3.1 Algorithm
 In the event of mesh mergers, there might be
multiple active cores in the new mesh. Nodes in the
mesh become aware of this situation when they
receive TREE-CREATE messages from multiple
cores. The nodes execute a core resolution
algorithm to decide on a unique core for the mesh
and forward TREE-CREATE messages arriving
from the unique core and discard TREE-CREATE
messages from other cores. As the multiple cores in
the mesh will also become aware of the existence of
other cores, they will also execute the same core
resolution algorithm. All the cores except the
“winning” core will demote themselves to non-core
state. One simple core resolution algorithm could
pick the winning core to be the one with the highest
IP address. This is the technique used in our
protocol. The Core resolution algorithm picks up
the node, which has the highest IP address.
 Once the core has been picked up the next step
is to create a tree using the mesh links. The creation
of user multicast tree is explained in the next
section.
2.4 Tree Creation
 This section discusses the creation of a tree for
data forwarding purposes once a mesh has been
established. The core is responsible for initiating

the tree creation process. From the point of view of
individual nodes of the mesh, this phase involves
identifying the subset of links adjacent to it that
belong to the tree.

2.4.1 Periodic TREE-CREATE Broadcast
 The core sends out periodic TREE-CREATE
messages along all the links adjacent to it in the
mesh. (Note that TREE-CREATE messages are
sent along the unicast tunnels in the mesh and are
processed by group members only, while JOIN-
REQ messages are broadcast messages that are
processed by all network nodes).
 The periodicity of the TREE-CREATE
messages depends on the size of the mesh and also
on the mobility of the nodes of the mesh. As the
mesh nodes are mobile, the number of hops
between neighbors keeps changing dynamically.
Thus, newer and more optimal trees might be
created when TREE-CREATE messages are sent
out. Group members receiving non-duplicate
TREE-CREATEs forward it on all mesh links
except the incoming, and mark the incoming and
outgoing links as tree links. If a node has a
collection of neighbors all 1-hop away on the same
broadcast capable interface, then the node can send
a single broadcast message to all 1-hop neighbors
simultaneously.

2.4.2 TREE-CREATE-NAK
 If a link is not going to be used as part of the
tree, the TREE-CREATE message is discarded and
a TREE-CREATE-NAK is sent back along the
incoming links. On receiving a TREE-CREATE-
NAK, a group member marks the incoming link as
a mesh link and not a tree link. Thus each non-core
node considers the link along which a non-duplicate
TREE-CREATE message was received and every
other link along which no TREE-CREATE-NAK
message was received to be part of the tree for a
specific group. (Core considers every link adjacent
to it to be part of the tree). Note that all these tree
links are bi-directional tunnels.
 The choice of using ACK or NAK in
response to the TREE-CREATE messages is
dictated by whether robustness or saving bandwidth
is more important. If an ACK-based (positive
acknowledgement) scheme is use, then data may
not be delivered along links where ACKs were lost.
This results in loss of data, but no wasting of
bandwidth. However, if a NAK (negative
acknowledgement) based scheme is use, loss of
NAKs can only result in some data being forwarded
more than once (which is discarded by the
downstream node on reception).When data arrives

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3378

at a node along one of the tree links, the node
forwards the data along all other tree links.
However, if data arrives along a non-tree link a
TREE-CREATE-NAK message is (again) sent back
along that link and the data is discarded.
2.4.3 Transient Loops
 The tree created by the <n>th TREE-
CREATE message might not be the same as the one
created by <n-1>th message. A situation may exist
where some nodes are forwarding data according to
the older tree and some according to the newer tree,
which may result in loops or data loss. Such a phase
is to be expected due to the dynamic nature of ad
hoc networks. However it is considered to be
transient and AMRoute recovers from it as soon as
the network reduces its dynamicity.
2.4.4 Node Failures and Group Leaves
 Nodes leaving a group or node failures are
only partially handled by the redundant links in the
mesh. In some situation, node failures might result
in splitting the mesh into multiple disjoint meshes,
where only one of these meshes has the core. Each
node in the mesh expects to periodically receive
TREE-CREATE messages. In case this message is
not received within a specific timeout, the node
designates itself to be the core after a random time.
The node whose timer expires the earliest succeeds
in becoming the core and initiates the process of
discovering other disjoint meshes as well as tree
creation. Multiple cores that may arise in this case
are resolved by the core resolution procedure.
2.4.5 Picking which branch to use for the Tree
 There are several possible algorithms that can
be used to decide which mesh branches to use for
the tree. The simplest approach is to simply accept
the first TREE-CREATE message that is received
and discard and duplicate TREE-CREATE
message. This results is a reasonable tree, but it is
not necessarily the most bandwidth efficient (e.g.,
using minimum number of total hops) or lowest
latency. We are therefore investigating the tradeoff
of increasing the complexity of branch selection in
order to improve bandwidth efficiency or reduce
latency. To improve bandwidth efficiency a node
can select the branch from which it received a
TREE-CREATE from its closest neighbor(based on
the TTL value in the outer IP header). However, in
order to prevent the tree from becoming broken
(not connecting all group members), the algorithm
must

 be able to tell when the TREE-CREATE
message has been received before, and

 not change the initial selection until the
next round of TREE-CREATE messages
are received.

 To detect duplicates it necessitates the use of a
path-vector field in the TREE-CREATE message.
Also the duplicate messages can be identified with
the help of a sequence no field in the packet. Every
time the core sends a TREE-CREATE packet at
increments the sequence no field. Initially the value
is 0. Each time a packet is duplicated it’s sequence
No is changed.
 The following figure explains the above
statements.

FIGURE 2.4: Virtual User-Multicast Tree

G = group member router (AMRoute capable)
X = non-member router (need not be multicast or
AM Route capable
- - - - --- = Link
______ = Virtual user-multicast tree

These are the various steps involved in creating a
tree in the AMRoute Protocol.

2.5 Implementation Details

The implementation details include the
various types of messages used and their formats.
These messages and their formats are given below.
2.5.1 JOIN_REQ message:
 The logical core node periodically to all
the nodes nearer to it broadcasts this message.
These nodes forward the message to their neighbors
and so on. The structure of the packet is as follows.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3379

Table 2.1: Join_Req

Version Message-ID Unused Initial-

TTL
Source IP ADDRESS IP Multicast

Address
 2.5.2 JOIN_ACK message:
 A node in response to a JOIN_REQ from
a logical core generates this. This message indicates
that the node is interested in becoming a member of
the group.

Table 2.2: Join Ack

Version Message-

ID
Unused Initial-

TTL
Source IP ADDRESS IP Multicast Address
 2.5.3 JOIN_NAK message:
 A node in response to a JOIN_REQ from a
logical core generates this. This message indicates
that the node is not interested in becoming a
member of the group.

Table 2.3: Join-Nack

Version Message-ID Unused Initial-

TTL
Source IP ADDRESS IP Multicast Address

2.5.4 TREE_CREATE message:

The logical core node generates this
message. This is used to create a tree out of the
mesh. The logical core node generates this message
periodically.

Table 2.4 Tree_Create

Version Message-
ID

SEQ-
NO

Initial-
TTL

Source IP ADDRESS IP Multicast
Address

2.5.5 TREE_CREATE_NAK message:

 The logical core node in response to the
TREE_CREATE message generates this message.
This indicates that the link cannot be used as a tree
link.

TABLE 2.5 TREE CREATE NAK

Version Message-
ID

SEQ-NO Initial
-TTL

Source IP ADDRESS IP Multicast
Address

Field DescriptionVersion: This field represents
the version of the AMRoute protocol.
Message-ID: This field is used to identify the type
of packet.

 Message-ID = 1, a JOIN_REQ packet
 Message-ID = 2, a JOIN_ACK packet

Message-ID = 3, a JOIN_NAK packet
 Message-ID = 4, a JOIN_CREATE
packet
 Message-ID = 5, a
JOIN_CREATE_NAK packet
 Message-ID = 6, a Data packet
Initial TTL: This field indicates the TTL value
(i.e.,) the no. of hop counts allowed to that
particular packet. This field when used along with
the TTL value in the IP header can be used to find
out the remaining hops for the packet.Source IP
Address: This field indicates the IP address of the
source of that packet. The node, which is sending
the packet, fills up this field with its address.
IP Multicast Address: This field indicates the
multicast group address. This is used to distinguish
from one group address to another group address.
SEQ_NO: This field is used to identify the
duplicate TREE_CREATE message. For the first
message this field is set to zero and for every
duplicate message this is incremented by one.
Path Vector: This is used to distinguish among
replicated versions of the same TREE_CREATE
messages when more bandwidth or latency optimal
trees are desired. Initially it is set to 0. Each node
that performs any replication modifies the value at
each replication.
These are the various message formats and their
descriptions.
Timer: A logical core keeps two timers, namely the
JOIN-REQ-SEND timer and the TREE-CREATE-
SEND timer. The expiry of JOIN-REQ-SEND
causes the node to compute the new TTL value to
use for the expanding ring search, broadcast a new
JOIN-REQ with this TTL value and reset the timer.
The TREE-CREATE-SEND timer is kept to send
out periodic TREE-CREATE messages. A non-core
member uses a TREE-CREATE-RCV timer. When
it expires, the node waits for some random amount
of time before it resets itself to be a core, and starts
sending out JOIN-REQs and TREE-CREATEs.
This period is set to be random to prevent multiple
non-core nodes from becoming cores
simultaneously.

Data structures
 Each member keeps two tables, each
containing a set of neighbors, the neighbors on the
mesh and the neighbors on the multicast tree. Note
that these neighbors are connected by unicast
tunnels rather than being physical neighbors. The
member also keeps a “hop-count” associated with
each mesh link. This hop-count is obtained at the

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3380

time of mesh link creation, and is updated by the
periodic control messages (control messages have
original TTL value used by source in the headers).
A node tracks the ID of the logical core it currently
recognizes, which can be itself. We allow the
existence of multiple logical cores in a same group.
However, each node only recognizes one logical
core at any instant. This information is updated
when the node receives a TREE-CREATE from a
logical core it did not recognize, or when the node
resets itself to be core, as described in detail in the
next section.
 So the data structures involves basically a
Mesh table and a Tree table. These include the
corresponding neighbors either of the tree or of the
mesh. Also many other details can be stored in this
table. This table is implemented using a singly
linked list data structure. This is chosen because of
the flexibility in inserting or removing an entry
from the table. Also the complexity involved is less
in this case.
2.6 MODULES
 The various modules in the protocol are as follows.
2.6.1 Module 1:
Receiving Control packets:
 This module deals with those routines,
which are to be executed on receiving some of the
control packets. They are as follows:
Receiving a JOIN_REQ message:
Core Node:
 If this core itself (because of the broadcast

medium) transmitted the JOIN-REQ, it is
ignored.

 If this core is in the same group as the JOIN-
REQ indicates and does not have a mesh or
tree link to the source of the JOIN-REQ, it
returns a JOIN-ACK and drops the JOIN-REQ.
(Note that the JOIN-ACK is unicast to the
source of the JOIN-REQ). The core marks the
source of the JOIN-ACK as its mesh neighbor.

 Otherwise the core decrements the TTL of the
JOIN-REQ and re-broadcasts it.

Non-core Node:
 If this JOIN-REQ comes from a logical core

that this node recognizes (which means they
are already on the same mesh), decrement the
TTL value of the JOIN-REQ and rebroadcast
it.

 If this JOIN-REQ comes form a different
logical core from that recognized by this node,
the node returns a JOIN-ACK to the source and
marks the source as a mesh neighbor.

 If this JOIN-REQ is for a different group, the
node decrements the TTL, of the JOIN-REQ

and re-broadcasts it(acting as an intermediate
router).

Receiving a JOIN_ACK packet
Core Node:
 If the JOIN-ACK is responding to a JOIN-
REQ sent out by this core, the logical core marks
the source of the JOIN-ACK as its mesh neighbor
and drops the JOIN-ACK.
Non-Core Node:
 A non-core member will NEVER receive a
JOIN-ACK message since JOIN-ACK is sent to the
source of a JOIN-REQ, which can only be a logical
core. Hence any JOIN-ACK received is dropped.
Receiving a JOIN_NAK Packet
Core Node:
 The logical core deletes any existing mesh
and tree links with the source of the JOIN-NAK.
Non-Core Node:
 The node deletes any existing mesh and tree
links with the source of the JOIN-NAK.
Receiving a TREE_CREATE Packet
Core Node:
 A logical core can only generate TREE-

CREATE messages.
 On receiving the message, the logical core uses

the core resolution algorithm to determine the
winner. If the core itself wins, the TREE-
CREATE is dropped. If the source of this
message wins, the receiving node becomes a
non-core member and transitions into the
NON-CORE State. The receiving node also
marks the winning core as a mesh neighbor,
and recognizes it as the new logical core. The
TREE-CREATE message is forwarded.

 Onto downstream mesh links, which are then
marked as tree links?

Non Core Node:
 If the source of this TREE-CREATE is the

same core as that recognized by this node, and
the message has a new sequence number (not a
duplicate), the node marks the incoming link as
a tree link. It also forwards the message to
neighbors along its downstream mesh links and
marks them as tree links.

 If this TREE-CREATE is a duplicate from the
same core as that recognized by this node, the
node marks the incoming link as a mesh link. It
also sends a TREE-CREATE-NAK message to
the upstream node and drops this TREE-
CREATE.

 If this TREE-CREATE comes from a different
logical core from that recognized by this node,
it runs the core resolution algorithm to decide
the new core. If the new core wins, the node
sets the CORE ID to the new core, forwards

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3381

the TREE-CREATE onto all its downstream
mesh links, and marks the incoming and
outgoing links as tree links. If the source loses
in the core resolution, this TREE-CREATE is
dropped.

 The TREE-CREATE path vector is modified
if a node performs does any replication. The node
reads the current content of path vector looking for
the least significant “1” (Initially the path vector is
set to zero).
Received a TREE_CREATE_NAK:
Core Node:
 The incoming link is marked as a mesh link,
instead of a tree link, and the message is dropped.
Non Core Node:
 The incoming link is marked as a mesh
link, instead of a tree link, and the message is
dropped.
Timer Events
JOIN_REQ Timer
 This message is used to detect other group
members. An expanding ring search is used
whereby successive JOIN-REQs are broadcast with
increasing TTL values every JOIN-REQ-SEND
time units. The TTL value can only be increased to
a specific upper bound, after which all JOIN-REQs
are broadcast using the same value.
TREE_CREATE Timer
 This message is used to build the
multicast tree. This message is transmitted over the
existing mesh links, i.e., this message is sent
through unicast tunnels to mesh neighbors. On
transmission of a TREE-CREATE, logical core
considers its mesh neighbors as its tree neighbors
also until informed otherwise by a TREE-
CREATE-NAK. Note that when a node joins a
group and sets itself to be a logical core, it has no
mesh neighbors prior to receiving a JOIN-ACK or
JOIN-REQ. Therefore, the TREE-CREATE
message is not transmitted until one or more mesh
neighbors exist.The two timer events and Receiving
the control packets or the data packets are executed
simultaneously. There are three processes, each of
which executes its routine independently.
2.6.2 Module 2:
Sending Data Packets
 This module is used to get data from the
user and the data is sent from a separate program.
Hence the two programs are to be executed
separately. Message Queues are used to establish
Inter Process Communication (IPC CALLS)
between the two modules. Whenever the data is to
be sent by the user, the user types the data and then
this module will check if there are any members in
the tree. If there is a node a message queue is used

to transfer the data from one routine to another
routine. After this the module sends the data to the
address specified in the queue. Thus this module is
used to send data from the user.
2.6.3 Module 3:
Tree Table:
 A tree table is actually a Linked List,
which is used to store some information Such as the
IP address of the neighboring node the number of
hopcounts required to reach the corresponding node
and some of the other entries like the core nodes id
total no of nodes in the tree etc.,
 This module is used to perform the
following operations.

 To add an entry to the tree table
 To remove an entry from the tree table
 To search for the given entry in the tree table
 To display the contents of the tree table
2.6.4 Module 4:
Mesh Table
 A mesh table is also implemented using a
linked list and it is used to store information about
the neighboring nodes in the mesh. These
informations include IP address of the neighbor,
Hopcount required to reach him, Total no. of
neighbors and the current core node.
The manipulations made in the mesh table are same
as those done in tree table.
 To add an entry to the mesh table
 To remove an entry from the mesh table
 To search for the given entry in the mesh table
 To display the contents of the mesh table

3. RESULTS

 The below result screens explain the entire
process in fully qualified manner.

Fig 3.1 Source node sending Message frame

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3382

Fig 3.2 Browsing the FILE message to be send to
destination

 Fig 3.3 sending File

Fig 3.4 Encrypted Message

Fig 3.5 Encrypted Message

Fig 3.6 Finding Core node to send the data

Fig 3.7. Decrypting the message (file)

Fig 3.8 Destination frame

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3383

Fig .3.9 receiving the message (file)

4. CONCLUSION

Analysis of earlier Adhoc routing
protocols states that existing multicast protocols do
not work well in ad hoc networks as the frequent
tree reorganizations can cause excessive signaling
overhead and frequent loss of datagram and core
node is not identified to pass the segment. The
solution for this is to design a routing protocol that
involves in first Finding core node and then send
each through it. Message Queues are used to
establish Inter Process Communication (IPC
CALLS).

The Optimal Adhoc Multicast Routing
Protocol (AMRoute) presents a novel approach for
robust IP Multicast in mobile ad-hoc networks by
exploiting user-multicast trees and dynamic logical
cores. It creates a bi-directional, shared tree for data
distribution using only group senders and receivers
as tree nodes. Unicast tunnels are used as tree links
to connect neighbors on the User-multicast tree.
Thus AMRoute does not need to be supported by
network nodes that are not interested/capable of
multicast, and group State Cost is incurred only by
group senders and receivers. Also, the use of
tunnels as tree links implies that tree structure does
not need to change even in case of a dynamic
network topology, which reduces the signaling
traffic and packet loss. Thus AMRoute does not
need to track network dynamics; the underlying
Unicast protocol is solely responsible for this
function. AMRoute does not require a specific
Unicast routing protocol;

therefore, it can operate seamlessly over
separate domains with different Unicast protocols.
We have tried to overcome the transient loops in
the mesh creation. The output achieved shows that
the protocol worked well and I conclude that this
protocol can be outperform well than earlier
protocols. The project achieved its main goal ‘To
perform multicast routing in adhoc networks’.

5. FUTURE WORK

 AMRoute showed some promise in its
simplicity and scalability in the number of senders.
However, the presence of unidirectional “critical”
links prevented reliable data delivery. The problem
became worse as mobility was increased. Other
drawbacks of AMRoute were the existence of loops
and inefficient formation of trees. A possible
improvement for AMRoute is to take reachability
information (i.e., packets sent to neighbor/packets
received from neighbor) into account when
selecting tree links. Using this method, the impact
of unidirectional critical links can be reduced. In
addition, introducing adaptively into the protocol
can build more optimal trees most importantly, a
loop prevention mechanism must be utilized for
AMRoute to be efficient.

 REFERENCES:

[1] Bommaiah, McAuley, Taplade and Liu

“”AMRoute:Adhoc Multicast Routing
Protocol”, draft-talpade-manet-amroute-00.txt,
August 6, 1998

[2] Ballardie T., “Core based Trees(CBT)
Mulitcast Routing Architecture”, RFC 2201,
September, 1997.

[3] Deering, S., et al, “Protocol independent
Mulitcast Sparse Mode (PIM-SM): Motivation
and Architecture”, Internet Draft, draft-ietf-
idmr-pim-arch-04.txt, October, 1996.

[4] Pusateri, T., “Distance Vector Multicast

Routing Protocol”, Internet Draft, draft-ietf-
idmr-dvmrp-v3-06.txt, March 1998.

[5] Corson, S., and J.Macker, “Mobile Ad hoc
Networking (MANET): Routing Protocol
Performance Issues and Evaluation
Considerations”, Internet Draft, draft-ietf-
manet-issues-00.txt, September, 1997.

[6] Perkins, C., “Mobile Ad hoc Networking
Terminology”, Internet Draft, draft-ietf-manet-
term-00.txt, October, 1997.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3384

[7] Sung.Ju Lee, William Su, Julian Hsu, Mario
Gerla, and Rajive Bagrodia “A Performance
Comparision Study of Ad Hoc Wireless
Multicast Protocols”

[8] ”Unix Network Programming” by
 Richard Stevens.
[9] “The Desing of Unix Operating Systems” By

Maurice J Bach.
[10] “Design of Unix Operating System” by

Maurice J Bach.

