
  
Journal of Theoretical and Applied Information Technology 

31st May 2022. Vol.100. No 10 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3360 

 

IN-DEPTH REVIEW ON MACHINE LEARNING MODELS 
FOR LONG-TERM FLOOD FORECASTING 

NAZLI MOHD KHAIRUDIN 1, NORWATI MUSTAPHA 2, TEH NORANIS MOHD ARIS 3, 
MASLINA ZOLKEPLI 4 

1,2,3,4Universiti Putra Malaysia, Faculty of Computer Sciences and Information Technology, Malaysia 

Email: 1nazmkhair@gmail.com, 2norwati@upm.edu.my, 3nuranis@upm.edu.my, 4masz@upm.edu.my 

 

ABSTRACT 
 
Flood is a natural disaster that can cause damage in human life, infrastructure, and socioeconomics. 
Forecasting the flood is essential to provide sustainable flood risk management for the people. Long-term 
flood forecasting is very important to provide early knowledge and information for decision maker in 
minimizing the impact of flood. Early warning can also be disseminated to the potential flood victim and 
area while proper action can be triggered such as mitigation and evacuation process. The development of 
long-term flood forecasting model has growing recently with the adoption of machine learning models. It has 
spark interest among researchers to explore the ability of machine learning characteristics in providing 
accurate forecasting. Nevertheless, the machine learning models has shown uncertainty and instability in 
their forecast. The goal of this paper is to provide an understanding and in-depth review of machine learning 
models in long-term flood forecasting. It includes investigating machine learning models used for long-term 
flood forecasting and performing comparative assessment in the type of parameters, pre-processing methods 
and performance measurements used by the models. This review indicates that machine learning models has 
widely been used involving single and hybrid models for long-term flood forecasting. Various parameters or 
flood variables have been used as the predictors. The performance of the forecast has been found to be 
improved through the hybridization of the model. Evaluation of the machine learning models can be done 
through various performance measurement that prove the models can provide acceptable forecast. The 
outcome of this study will help future researchers by providing insights of the current progress in the use of 
machine learning in long-term flood forecasting.   

Keywords: Flood Forecasting, Machine Learning Models, Hybrid Model, Literature Review, Hydrological 
Forecasting 

1. INTRODUCTION 
 
Flood is a common natural disaster that 

occurred around the world which giving a huge 
impact to lives, economic and social. It can bring a 
great destruction to the people and infrastructure. 
The advancement of technology has enabled flood 
forecasting to be done to alleviate damages caused 
by flood. Flood can be forecasted within several 
define lead time. Based on [1], the lead time of the 
forecast can be categorized by short-term which up 
to 2 days, medium-term up to ten (10) days, long-
term for more than ten (10) days and seasonal if it 
takes several months. 

The need for such forecast especially in long-
term period is an important significance to provide 
robust disaster management strategies, including 
adaptive and mitigation measures. An optimized 

forecast not only help in facilitating stakeholder’s 
decision but also to the socio-economic sectors. 
Flood forecasting with different lead time is 
fundamentally challenging and complex as the 
climate condition of the nature is very dynamic. 
Many forecasting models been developed nowadays 
are data-specific involving simplified assumptions.  

One type of the model that been widely used in 
flood forecasting is known as physical based model. 
Physical based model is a description method of the 
hydrological process for targeted basin [2]. One of 
the predictors that can be used to forecast flood is 
watershed. There are fourteen (14) physical models 
has been reviewed by [3] that can be used to forecast 
watershed using storm water event. The physical 
models including Agricultural NonPoint Source 
pollution model (AGNPS), Areal Nonpoint Source 
Watershed Environment Response Simulation 
(ANSWER), DR3M/DR3M QUAL, Dynamic 
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Watershed Simulation Model (DWSM), Gridded 
Surface/Subsurface Hydrologic Analysis (GSSHA), 
Hydrologic Engineering Center–Hydrologic 
Modelling (HEC-HMS), Hydrological Simulation 
Program—Fortran (HSPF), Kinematic Runoff and 
Erosion model (KINEROS), MIKE Syst`eme 
Hydrologique Europ´een (MIKESHE), MIKE 
URBAN, Precipitation-Runoff Modelling System 
(PRMS), Sedimentology by Distributed Modelling, 
Techniques—version III (SEDIMOT III), Storm 
Water Management Model (SWMM) and Technical 
Release 55 (TR-55).  

Although physical based model is expected to 
be more accurate than the approximations model, it 
is inefficient due to its complexity in numerical 
schemes. Physical model that utilize the 2D shallow-
water equation has long been used to forecast runoff 
[4][5][6], flows [7][8], and flood hazard map [9]. 
These predictors are often used to forecast flood. The 
development of physical model as such needs a great 
amount of data, complex calculation and 
comprehensive knowledge and expertise of the 
hydrological data and process underneath [10]. 
Although physical based model can provide an 
acceptable forecast, but there is also event in which 
it failed to properly predict, resulting massive 
disaster [11]. In recent development of physical 
based model, hybridization has been adopt to elevate 
the performance of such models [12].  

The use of extensive amount of data in physical 
based model has led to more processing time that can 
increase processing cost. Furthermore, it needs a 
very depth knowledge of the related process 
involved to provide forecast. To overcome this 
drawback, data driven models has been widely 
adopted among researchers. Data driven models is 
based on stochastic, empirical and theory concepts 
which is flexible and using minimum data 
requirement [13].  

To improve flood forecasting it is a trending 
practices among the researcher to grasp different 
type of data such as climate indices into the forecast 
model [14]. Among the data driven models 
developed for flood forecasting are Autoregressive 
Moving Average (ARMA) and Autoregressive 
Integrated Moving Average (ARIMA). ARMA and 
ARIMA are based on  Flood Frequency Analysis 
(FFA) where they interprets past record of 
hydrological events for the probability of future 
occurrences [15]. ARMA and ARIMA has been used 
either one or both to forecast monthly inflow [16], 
water demand [17], inflow dam reservoir [18] and 
flood events [19] using various type of flood 

variables such as water discharge, water level, 
temperature and rainfall. Extensions of these models 
such as Seasonal Autoregressive Integrated Moving 
Average (SARIMA) [20] and Multiplicative 
Seasonal Autoregressive Integrated Moving 
Average (MSARIMA) [19] are used in flood 
forecasting by supporting seasonal component.  

Advance type of FFA called Regional Flood 
Frequency Analysis (RFFA) estimate the magnitude 
of flood events for various return period in 
homogeneous region [21]. RFFA has been reported 
to be more efficient than the physical model with less 
predictor variables [22]. Multiple Linear Regression 
(MLP) is another data-driven model used in flood 
forecasting [23]. Although MLR can exhibit 
acceptable forecast, but it provides lower 
performance and only reliable when strong linearity 
is shown between variables [24]. 

Physical based model and data-driven model 
has been a great tool in forecasting the hydrological 
events, but they imposed their own limitation such 
as complex calculation and more processing time in 
physical based model and instability in model 
performance for data-driven models.  Due to these 
limitation, researchers now has increasingly using 
progressing advanced data driven model such as 
machine learning [25]. In machine learning, 
forecasting is made using historical data without 
requiring knowledge about the underlying physical 
processes [14]. Comparing with fully distributed 
model, machine learning has achieved high 
predictive potential with less complex, less 
development time and minimal inputs [26][27]. The 
use of machine learning has demonstrated its ability 
to perform acceptable forecast outperforming 
conventional physical model and can accommodate 
the non-linearity of the hydrological events. [27].  

Machine learning models such as Artificial 
Neural Networks (ANN) [28][29][30], Random 
Forest [31], Extreme Learning Machine (ELM) [32], 
Support Vector Machine [33], Support Vector 
Regression (SVR) [34][35], and Neuro Fuzzy [14] 
has been reported to be effective in forecasting short-
term and long-term flood with higher accuracy. 
Although individual machine learning algorithm has 
showing significant result in flood forecasting, but 
the performance of such models can be improved 
through hybridization with other machine learning 
methods. Through hybridization it not only provides 
faster learning process and stronger generalization 
ability [32][36], but also increase the forecasting 
accuracy [36][37][38]. 
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The ability of machine learning model to learn 
from the historical data can be a shortcoming if the 
data is scarce, thus impacting the performance of 
such model. Therefore, optimization in data pre-
processing is essential to overcome this problem. 
The use of pre-processing method to optimize the 
input selection such as Wavelet Transform [39][40], 
Ensemble Empirical Mode Decomposition (EEMD) 
[41], Genetic Algorithm (GA) [22] and correlation 
analysis [27] has been reported to improve the 
performance and accuracy of the forecasting. 

As machine learning has increasingly growing 
and widely adopted to provide flood forecast by 
researcher, it provides uncertainty and instability in 
the forecast. It is important to have an in-depth 
knowledge on how this model can be used and tuned 
in providing acceptable and accurate performance.  
This paper tends to provide insights regarding 
various machine learning algorithms for long-term 
flood forecasting. The contributions of this survey 
are to investigate machine learning models used for 
long-term flood forecasting and performing 
comparative assessment in the type of parameters, 
pre-processing methods and performance 
measurements used by the models. Analysing the 
type of parameters and pre-processing methods is 
crucial as it can affect how the model behave, while 
performance measurement will guide the researcher 
to select the right measurement to evaluate the 
model. 

2. RESEARCH METHODS   
 
Systematic Literature Review (SLR) was 

conducted to identifies and provide deep 
understanding regarding the machine learning 
method in long term flood forecasting. This review 
is based on guidelines by Kitchenham and Brereton 
[42] in which it allows us to discover and synthesize 
information in published materials systematically. It 
was based on pre-defined question of the research to 
provide concise analysis and valuable information to 
the research community. 

This SLR is performed by following a formal 
process with define steps which make it more 
objective and repeatable. This process is 
fundamental towards the acceptance and 
appreciation of the conclusion of this study.  SLR 
stages divided into 3 main phase which are Planning 
the Review, Conducting the Review, and Reporting 
the Review. Table 1 summarize the activities done 
for each stage in every phase of this study. 

 

Table 1: SLR stages 

Phase 1: 
Planning the 
Review 

Formulating Research Questions 
Developing Review Protocol 
Identifies Inclusion and 
Exclusion Criteria 

Phase 2:  
Conducting the 
Review 

Defining Search Strategy and 
Selection Process 
Primary Study Selection 
Quality Assessment 

Phase 3:  
Reporting the 
Review 

Data Extraction and 
Synthetization 

 

Conducting a formal and organized search 
process is crucial in this review. It helps in finding 
all relevant and related literature though available 
online digital resources that matched with the search 
criteria. In this study, search for literatures has been 
conducted through six online repositories including 
automatic search that involves IEEE Explorer, ACM 
Digital Library, Science Direct, Scopus and 
Springer. Other than that, Google Scholar is used in 
the manual search process. These repositories were 
selected based on its relevance to the topic. 

The automatic search was conducted using 
keyword search query consists of two main search 
terms. The lead time of the forecast is considered as 
Term 1 (<L1-Ln>) and term most often used to 
describe flood prediction as Term 2 (<P1-Pn>). Term 
1 included "long term" OR "monthly" OR "seasonal" 
OR "yearly" OR "annually" and Term 2 included 
"flood forecasting" OR "flood prediction" OR "flood 
estimation" OR "flood analysis". Figure 1 described 
the flowchart of the search queries. Search results 
with only preview content are not included. A total 
initial search of 984 papers is found by this keyword 
search query.  

 

 

 

 

 

 
 
 

Figure 1: Automatic search query method  
 

From the initial search result of 984 papers, the 
total of primary papers include in this study is 40 

Term 1 
<L1> OR <Ln>… <Ln> 

Term 2 
<P1> OR <Pn>… <Pn> 

AND 

Result 
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papers after automatic and manual searching. 
Quality assessment is conducted for all the primary 
papers to assess their quality. 

The following section will present the analysis 
results and discussion in which Section 3 will 
present the machine learning models developed for 
long-term flood forecasting, Section 4 presents the 
comparative assessment of the machine learning 
model for long-term flood forecasting including 
flood variables, pre-processing techniques and 
performance measurement used. Section 5 presents 
the conclusion of this study. 

3. MACHINE LEARNING MODELS IN 
LONG-TERM FLOOD FORECASTING  

Long-term flood prediction is very important to 
support water resources management and reducing 
the impacts of flood. It helps in evacuation process 
and giving knowledge to the citizens regarding 
potential floods. Long-term forecasting for over 10 
days, monthly, annually, or seasonally is done to 
assess the potential of flood in specific location and 
region. The use of machine learning model has 
sparked an interest among researcher towards the 
exploration and research in the field of long-term 
flood forecasting. Machine learning model has 
widely been used to forecast hydrological events 
such as annual and monthly inflow [43], monthly 
and annual runoff [44]–[46], monthly discharge 
[47][48], flood quantiles [22], monthly flow rate 
[49], monthly ground water level [50][51], monthly 
and seasonal rainfall  [52]–[57], monthly streamflow 
[33], [40], [65]–[67], [41], [58]–[64], monthly and 
seasonal precipitation [68], and monthly and annual 
water level [69][70]. 

The flow of the development of machine 
learning model can be summarized as in Figure 2. 
This flow depicts general flow and variations can be 
found among researchers in which involves the use 
of the original datasets without pre-processing and 
including validation process in between training and 
testing. In developing machine learning model for 
long-term flood forecasting, data are gathered from 
reliable resources. Then data are pre-processed in 
which original datasets is transformed to a new 
format and be prepared as an input to the model. Pre-
processing is crucial as it determine the input 
selection for the model. Model development stage 
involved using tools or programming language to 
transform algorithm into working model. This model 
then will be evaluated during training and testing of 
the model. 

The development of machine learning model for 
long-term flood forecasting can be classified as 
single or hybrid model. Single model applies only 
one of machine learning methods to produce the 
forecast, while hybrid model using different machine 
learning method in a form of integration or 
ensemble. 

 

 

 

 

 
 
 

Figure 2: Flow of Machine Learning development for 
long term flood forecasting 

 
Integration involved integrating one machine 
learning model with another machine learning 
model, data-driven model, physical based model, or 
other conventional methods. While ensemble can be 
done by combining multiple models through 
aggregating, bagging, boosting, blending, or 
stacking techniques. The taxonomy of the machine 
learning methods in this study is depicts in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Taxonomy of machine learning models in long-
term flood forecasting 

 
3.1 Machine Learning in Long-Term Flood 
Forecasting Using Single Model 
 

In the development of long-term flood 
forecasting using single model, it is revealed that 
Artificial Neural Networks (ANN) is the most single 
machine learning models that been used to forecast 
long-term flood. Other methods include Support 
Vector regression (SVR), Support Vector Machine 
(SVM), Decision Tree (DT), TreeBoost (TB), 
Random Forest (RF), Extreme Learning Machine 
(ELM), General Regression Neural Network 
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(GRNN), Multilayer Perceptron (MLP), Radial 
Basis Function Neural Networks (RBFNN), 
Recurrent Neural Network (RNN) and 
Autoregressive Neural Network (ARNN).  

ANN has been widely developed to forecast 
monthly rainfall in [71][52][53][56][57] which then 
been compared with existing model used in 
particular location. The existing model are named 
Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) [71], General Circulation 
Model (GCM) [52], and Predictive Ocean 
Atmosphere Model for Australia (POAMA) 
[53][56][57]. Rainfall data and climate indices has 
been used as their predictors. These studies indicates 
that ANN provide a better rainfall forecast prediction 
than GCM and have better skill forecasting than 
POAMA. ANN has the advantages in quantifying 
the expected rainfall amount and not just the 
categorization of above or below median [56]. In the 
other hand the TOPSIS is reported to outperform 
ANN although the performance during training 
phase is better but do not show acceptable result 
during validation phase. In this case, large number of 
predictors is needed to gain high performance for the 
ANN model comparing to TOPSIS. This indicate 
that although ANN is a promising tool to forecast the 
rainfall, but it can produce uncertain results 
depending on the type and amount of data used for 
particular geographical location. 

ANN has also been developed along with SVR 
in streamflow forecasting. ANN prove to have 
superiority over SVR in predictability performance 
[72]. Although both ANN and SVR can deal with the 
non-linearity of the time series data, SVR can 
minimize the structural risk, thus avoiding model 
over-fitting [72]. SVR also has been reported to 
outperform ANN in monthly streamflow forecasting 
with low forecasting error [47]. In the other hand, 
ANN models that used multilayer perceptron (MLP) 
and radial basis function (RBF) has proven to be 
more reliable than the support vector machine 
(SVM) in forecasting river flow with the 
incorporation of the time index within the inputs 
[73]. MLP also has improve the accuracy of 
precipitation simulation in arid climates by 
importing exogenous variables to the networks and 
using bigger time scales [68]. MLP has also proven 
to outperformed Adaptive-Network-Based Fuzzy 
Inference System (ANFIS) in the forecasting of 
seasonal precipitation based on different large-scale 
climate signals [74].  

Another type of neural networks that recently 
gain interest among researchers is Extreme Learning 

Machine (ELM). ELM is a model that use single-
layer feedforward neural networks that randomly 
determined the hidden neurons and learns the pattern 
embedded in the input variables [67]. ELM has 
proven to forecast long-term streamflow with better 
accuracy over another model such as ANN [67] 
[70],SVR and GRNN [75]. In monthly ground water 
level forecasting, ELM has proven it superiority over 
ANN and RBF in [50] and SVM in [51]. ELM has 
been found to simplifies the entire training process 
and reduce the computational time of the training 
neural networks [76]. Table 2 summarized the single 
models of machine learning for long-term flood 
forecasting. 

While ANN and ELM are based on connected 
neurons where such happened in human brains, 
another model which called Tree model is one of 
machine learning model that use the representation 
of tree in which it can identify way of splitting data 
set based on certain conditions. Ref [60] compared 
three tree models for monthly streamflow 
forecasting using streamflow data. It has been found 
that Random Forest has provide better performance 
than TreeBoost and Decision Tree techniques. This 
is due to random forest consist of parallel decision 
trees that grown together until the optimal results are 
met. Other tree model such as M5-Tree has been 
reported to be underperformed comparing to Least 
Square Support Vector Regression (LSSVR) when 
modelling monthly streamflow with the influenced 
of periodicity component as an external sub-set [58]. 

3.2 Machine Learning in Long-Term Flood 
Forecasting Using Hybrid Model 
 

Machine learning models for long-term flood 
forecasting also can be found in the term of hybrid 
model. Hybrid models are developed by integrating, 
ensemble or combining multiple machine learning 
methods to produce forecast with acceptable 
performance and accuracy. Some of the researcher 
tend to integrate machine learning with other 
conventional methods such as physical method in the 
effort to find enhanced model performances.  
 

In flow forecasting, various hybrid models are 
developed by integrating optimizing methods for the 
inputs with the machine learning models. 
Optimization methods such as Discrete Wavelet 
Transform (DWT), Empirical Mode Decomposition 
(EMD), Ensemble Empirical Mode Decomposition 
(EEMD) and Genetic Algorithm (GA) are among 
that capture the attention of the researchers. The use 
of hybrid model such as DWT-ANN[40], DWT-
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RBFNN[44], DWT-SVR [33] has been proved to 
provide a precision forecasting for monthly 
streamflow. In these models the use of multiple type 
data which is rainfall and discharge has provided 
greater forecasting accuracy than only using the 
discharge data. The use of rainfall data has given a 
significant impact to the forecasting performance. 
Wavelet-Extreme Learning Machine (WA-ELM) 
has been developed for forecasting monthly flow in 
semi-arid region in Iraq and been compared with 
single ELM [39]. The results indicate that the best 
performance of these two models is influenced by 
the different period of antecedent data as predictors.  

 
In the other hand, the use of  hybrid models 

using Wavelet based has indicates that Wavelet-
ELM (W-ELM) is more suitable than Wavelet-
Neural Network (W-NN) model for long-term runoff 
forecasting [64]. Unlike W-ELM, W-NN model has 
failed to address the non-linear characteristics of the 
rainfall-runoff process.  
 

Empirical Mode Decomposition based model 
also been used in the long-term runoff forecasting. 

 

Table 2: Machine learning for long-term flood forecasting using single model 

 

Reference Method 
Proposed 

Forecasting 
Type 

Lead 
Time 

Flood  
Variables 

Comparison Method Country 

[69] ANN Water Level Annually Rainfall, 
Water Level 

LR, 
ARIMA 

Malaysia 

[71] ANN Rainfall Monthly Rainfall, 
Climate signals 

TOPSIS Canada 

[52] ANN Rainfall Monthly Rainfall, 
Climate Indices, 
Temperature 

GCM Australia 

[58] LSSVR, 
MARS, 
M5-Tree 

Stream Flow Monthly Streamflow MLR Iraq 

[53] ANN Rainfall Monthly Rainfall, 
Atmospheric, 
Temperature, 
Composite, 
Climate Indices 

POAMA Australia 

[47] SVR Discharge Monthly Discharge ANN-ELM, 
GPR 

India 

[48] ARNN  Discharge Monthly  Discharge, 
Water Level 

ARMA, 
ARIMA 

India 

[77] ANN  Precipitation Monthly Rainfall, 
Climate Signals 

ANN with different 
signal 

Iran 

[60] DT, 
TB, 
RF 

Stream Flow Monthly Stream Flow Compare each of the 
proposed method 

Iraq 

[73] ANN, 
SVM 

River Flow Monthly River Flow Compare each of the 
proposed method 

Iran 

[72] SVR, 
ANN 

Discharge Monthly Discharge Compare each of the 
proposed method 

India 

[68] ANN Precipitation Monthly Precipitation, 
Climatic Data 

NAR, 
NARX 

Iran 

[50] ELM Ground Water 
Level 

Monthly Precipitation, 
Evaporation, 
Ground Water Level 

ANN, 
RBFNN, 
ARMA 

Iran 

[51] ELM, 
SVM 

Ground Water 
Level 

Monthly Rainfall, 
Temperature, 
Evapotranspiration, 
Ground Water Level 
 

Compare each of the 
proposed method 

Canada 
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Reference Method 
Proposed 

Forecasting 
Type 

Lead 
Time 

Flood  
Variables 

Comparison Method Country 

[61] ELM Stream Flow Monthly  Stream Flow ANN Malaysia 

[75] ELM Stream Flow Monthly Stream Flow SVR 
GRNN 

Iraq 

[74] MLR, 
MLP 

Precipitation Seasonal Precipitation, 
Climate signal 

ANFIS Iran 

[56] ANN Rainfall Monthly Rainfall, 
Atmospheric, 
Temperature, 
Composite,  
Climate Indices 

POAMA Australia 

[57] ANN Rainfall Monthly Rainfall, 
Atmospheric, 
Temperature, 
Composite, 
Climate Indices 

POAMA Australia 

[67] ELM Stream Flow Monthly Rainfall, 
Climate Indices 

ANN Australia 

Adaptive Empirical Mode Decomposition-ANN 
(AEEMD-ANN) [41] and Ensemble Empirical 
Mode Decomposition-ANN (EEMD-ANN) [46] 
are among hybrid models developed for that 
purpose. AEEMD-ANN has proven its superiority 
in forecasting the runoff in flood season, but not 
as good as ANN, SVM, Seasonal First-Order 
Autoregressive (SAR) and ANFIS in the dry 
season. EEMD-ANN has been reported to 
enhanced forecasting accuracy better than ANN 
alone in annual runoff forecasting [46].  
 

In forecasting annual streamflow, EMD, 
EEMD and Seasonal-Trend Decomposition Using 
Loess (STL) has been integrated with ANN to 
provide a model without any basis function [59]. 
By incorporating “seasonality” instances in the 
model, it can provide a conducive long-term 
streamflow forecasting. The hybridization of 
machine learning model with the decomposition 
method has led to input optimization that affected 
how the model behave.  
 

To have a robust long-term machine learning 
model, it is proposed that the model must be self-
adaptive. Self-adaptive model such as Self-
Adaptive-Extreme Learning Machine (SaE-ELM) 
[70] has demonstrate that it can be efficiently 
applied to produce accurate and reliable monthly 
water level forecast benefiting from the 
differential evolution characteristics of 
robustness, simplicity, and high speed.  
 

Other hybrid machine learning model also 
been developed for long-term streamflow 

forecasting such as Adaptive Neuro-Fuzzy 
Inference System-Fire Fly Algorithm (ANFIS-
FFA) [62], Wavelet-Linear Genetic Programming 
(WLGP) [64], and Bayesian ANN with GR4J 
(GR4J-ANN) [65]. ANFIS-FFA has been 
reported to outperform the traditional ANFIS with 
minimal input but better forecasting performance. 
This is due to the robustness of the FFA that 
contribute to the membership function parameters 
optimization in each input combination [62]. 
WLGP is a hybrid model that include discrete 
wavelet transform and linear genetic 
programming to forecast monthly streamflow. 
The use of WLGP with multi-resolution time 
series sub-signals as inputs, has provide better 
forecast accuracy than single model such as 
Linear Genetic Programming (LGP), Wavelet-
ANN (WANN), ANN and Multi Linear 
Regression MLR [64].  

 
The use of more conventional model GR4J 

with ANN [65] has indicated that performance of 
this hybrid model surpassed the performance of 
the conventional model GR4J alone in terms of 
median forecast and forecast distribution. 
However, this model has the limitation in which 
two different types of models must be developed 
for each catchment that can resulting more time 
and expertise needed. Although hybrid models 
have given significant effect to the performance 
of long-term streamflow forecasting, but it may 
not be suitable to develop for certain region.   
 

Higher quality flow prediction has been 
reported to be achieved by the hybridization of 
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fuzzy neural network and least squared method 
(Fuzzy MLP) when compared to the traditional 
multilayer perceptron [78]. Although this hybrid 
methods provide less forecast error, but some 
instances obtained higher value of standard 
deviation that need to be researched further.  

 
 Another hybrid model developed for runoff 

forecast namely fuzzy neural network–Markov 
(NFNN-MKV) [43]. This model has able to 
enhance the mid to long-term runoff forecast for a 
reservoir system by benefiting the ideal point 
fuzzy neural network and the Markov forecasting 
model that able to solve the stationary or volatile 
strong random process problem [43]. Genetic 
Algorithm (GA) is an optimization method that 
based on natural selection. Hybrid methods such 
as Genetic Algorithm-Support Vector Regression 
(GA-SVR) [49] has shown great performance in 
monthly runoff forecasting both in wet and dry 
period with the influence of the predictor’s 
selection. The use of runoff data together with 
rainfall and temperature has shown a great impact 
to the forecasting results.  

 
The potential of genetic algorithm also has 

been explored by integrating the optimization 
technique with ANN [22].Two models are 
developed namely GA Optimized For Artificial 
Neural Network (GAANN) and Back Propagation 
Algorithm Optimized for ANN (BPANN). These 
models are used to forecast Regional Flood 
Frequency Analysis (RFFA). Although the use of 
non-linear models is uncommon for RFFA but 
these two models have proven that they can 
produce acceptable forecasting result with similar 
performance. 
 

Hybrid models have proven their capabilities 
not only in flow and runoff forecasting but also 
rainfall forecasting. In southeast Australia, 
Adaptive Network-Based Fuzzy Inference 
System (ANFIS) has been developed to forecast 
spring rainfall [27]. This forecast model utilizes 
the climate signals as predictors and compared the 
result with the conventional model ANN and 
POAMA. This study has shown that with accurate 
predictors selection ANFIS is superior to 
conventional models in forecasting the spring 
rainfall. In forecasting monthly rainfall, ensemble 
empirical mode decomposition integrate with 
Support Vector Machine (EEMD-SVR) has 
proven to provide  better forecast accuracy 
compared to ANN, ARIMA and SVR [55]. The 
study has indicated that decomposition technique 

by EEMD has provide an efficient technique for 
analyzing the non-linear and non-stationary 
hydrologic data. 
 

Although hybrid model has proven its 
potential to provide a better long-term flood 
forecast compared to single model, but a study 
reported the opposite results. A study using hybrid 
machine learning models by [66] indicates that 
single-type model ANN and ARMA have 
outperformed six hybrid models including the 
wavelet based and Empirical Mode 
Decomposition based models for monthly 
streamflow forecasting at Cuntan and Yichang 
stations. This is due to the use of extension series 
that giving various performance of the hybrid 
model. 
 

The hybrid models for long-term flood 
forecasting are summarized in Table 3. 

4. COMPARATIVE ASSESSMENT OF 
MACHINE LEARNING MODELS FOR 
LONG-TERM FLOOD FORECASTING 

 
4.1 Type of Parameters 

The application of long-term flood 
forecasting model is derived from the selection of 
appropriate parameters or flood variables. 
Historical data from various resources are widely 
used depending on the forecasted location. There 
are several parameters that are frequently used by 
researchers including rainfall, streamflow, 
climate indices, climate signals, runoff, discharge, 
and flow. Most of this historical data are gathered 
from the station itself or from forecast databases 
and websites such as British Columbia River 
Forecast Centre (BCRFC) [71], National Ocean 
and Atmospheric Administration (NOAA) [71], 
Australian BOM’s Climate Data Online 
[52][53][53], Royal Netherlands Meteorological 
Institute Climate Explorer [52][53][56],Central 
Water Commission, Indian Metrological 
Department’s [48], and Department of Irrigation 
and Drainage Malaysia [69][61][70][62].  

Figure 4 indicates parameters used from the 
primary studies. Researchers may use 
combination of parameters thus resulting more 
count for particular parameters. Although in some 
cases, combination of parameters giving 
significant impact to the forecasted value but 
using single flood variable might as well giving 
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an acceptable result. Some studies have proven 
that by introducing multiple input to their studies 
will produce better model performance 
[53][44][62]. There is  a study reported that by 
using rainfall data, the accuracy of the model is 
enhanced [40]. 

The historical datasets in term of daily, 
weekly, monthly, or annually used in the primary 
studies to construct and evaluate the model are 
ranging from the period of 8 to 145 years. These 
datasets mostly are divided into training and 
testing, but some researchers include the 
validation phase in between. 

4.2 Pre-Processing Methods 
 
The use of historical data for the purpose of long-
term flood forecasting can affect how the models 
behave. Original data can be scarce, imperfect, 
noise, or imbalance, thus it is not appropriate to be 
used solely for the forecast [69][36][79][80]. The 
performance of the forecasting model can be 
enhanced through pre-processing[81][82]. The 
selection of input is very important as it contribute 
to the precision and accuracy of the forecast 
model [33][41]. 

 

Table 3: Machine learning for long-term flood forecasting using hybrid models 

Reference Method Proposed Forecasting 
Type 

Lead Time Variables Comparison Method Region 

[39] WA-ELM River Flow Monthly River Flow ELM Iraq 

[40] DWT-RBFNN, 
QP-DWT-RBFNN 
 

Stream Flow Monthly Discharge 
Rainfall 

Q-RBFNN 
QP-RBFNN 

China 

[41] AEEMD-ANN Stream Flow Monthly Runoff SVM,  
ANFIS,  
ANN,  
SAR 

China 

[22]  GAANN Flood 
Quantiles 

Quantiles Stream Flow,  
Climatic 

BPANN Australia 

[59] STL-ANN, 
EEMD-ANN, 
EMD-ANN 

Stream Flow 10 days, 
Monthly 

Stream Flow Compare each of the 
proposed method 

China 

[54] ANFIS Rainfall Seasonal Rainfall, 
Climate Signals 

ANN, 
POAMA, 
Climatology Forecast 

Australia 

[44] DWT-FFBP- Q, 
DWT-FFPB-QP, 
DWT-RBFNN-Q, 
DWT- RBFNN- QP 
 

Stream Flow Monthly Rainfall,  
Runoff 

FFBP-Q,  
FFBP-QP,  
RBFNN-Q,  
RBFNN-QP 

China 

[78] Fuzzy MLP Water Flow Monthly Flow MLP Brazil 

[49] GA-SVR, 
GMDH HYMOD, 
GA-ANN 
 

Flow Rate Monthly Flow Compare each of the 
proposed method 

Iran 

[33] EMD-SVR-Q, 
EMD-SVR-QP, 
EMD-SVR-QP, 
DWT-SVR-Q, 
DWT-SVR-QP, 
DWT-SVR-QP 
 

Stream Flow Monthly Runoff, 
Rainfall 

SVR-Q, 
SVR-QP 

China 

[45] G-ELM, 
I-ELM, 
W-ELM, 
W-NN  

Runoff Monthly Rainfall Runoff Compare each of the 
proposed method 

Iran 
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Reference Method Proposed Forecasting 
Type 

Lead Time Variables Comparison Method Region 

[70] SaE-ELM Water Level Monthly Water level ELM Malaysia 

[62] ANFIS-FFA Stream Flow Monthly Stream Flow ANFIS Malaysia 

[64] WLGP Stream Flow Monthly Stream Flow LGP, 
ANN, 
WANN, 
MLR 

Iran 

[64][71] GR4J-ANN  
 

Stream Flow Monthly Rainfall, 
Daily Flow, 
PET data, 
Rainfall 
Forecast, 
Groundwater 
Level, 
Soil Moisture 
Index  

GR4J 
ANN 

Australia 

[55] EEMD-SVR Rainfall Monthly Rainfall ANN, 
ARIMA, 
SVR 

China 

[46] EEMD-ANN Runoff Annually Runoff ANN China 

[66] WA-ANN, 
WA-ARMA, 
EMD-ANN, 
EMD-ARMA, 
SSA-ANN, 
SSA-ARMA 

Stream Flow Monthly Stream Flow Compare each of the 
proposed method 

China 

[43] NFNN-MKV Inflow Annually 
Monthly 

Rainfall, 
Inflow, 
Discharge 

MKV, 
FNN, 
SVR 
WNN 

China 

[60] GEP-NGRGO Flow Monthly Flow ARIMA Iraq 

 

 

Figure 4: Parameters used in the machine learning model for long-term flood forecasting 
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Figure 5 summarizes the pre-processing 
methods used in the primary studies. Wavelet 
Transform (WT) is the most method apply by the 
researchers followed by Ensemble Empirical 
Wavelet Decomposition (EEMD), Cross 
Correlation Function (CCF), and Genetic 
Algorithm (GA). Other technique includes 

Autocorrelation function (ACF) and Partial 
Autocorrelation Function (PACF), Empirical 
Wavelet Decomposition (EMD), Aggregation, 
Differential Evolution (DE), Singular Spectrum 
Analysis (SSA), Maximum Relevance-Minimum 
Redundancy (MRMR), and Seasonal-Trend 
Decomposition Using Loess (STL). 

 

 

Figure 5: Pre-processing methods 

 

The use of wavelet decomposition such as 
Discrete Wavelet Transform (DWT) decomposed 
time series data into shifted and scaled version of 
a wavelet, a mother wavelet [44]. It is a useful 
method that able to analyse time-series variation 
that give information on time and frequency 
domains of signal. DWT is more efficient than 
calculating wavelet coefficient at each possible 
scale in the continuous wavelet transform that 
takes more of process work [64]. Although DWT 
is a great pre-processing technique, but it is 
sensitive in the selection of mother wavelet 
[83][33][66]. The decomposition level and 
mother wavelet must be predetermined. Wavelet 
transform is suitable for non-stationary data 
processing, but data must be linear [41].  

The decomposition technique of DWT has 
been proven to improved forecast performance 
[40][44][33][64] but in some cases the 
decomposition of such time series data did not 
giving any significant difference in term of the 
forecast accuracy. This is because wavelet 
analysis is based on the convolution of the signal 
with the filter, that can lead to border distortions 
when performed on finite-length signals [66]. The 
drawback of DWT is it has a problem called shift 
variance behaviour in which it varies the energy 

of DWT result depending on only one sample 
delay of an original signal. It is said that down 
sampling causes the problem [84]. 

Empirical Model Decomposition (EMD) [85] 
decomposes nonlinear signal into Intrinsic Mode 
Functions (IMFs) and one residual component. 
Unlike DWT, EMD can decompose time series 
data which is non-stationary and non-linear [59]. 
EMD has the advantages over the DWT as EMD 
has its full self-adaptiveness and requiring no 
predetermined basis function [41]. EMD has the 
drawbacks of having the frequent occurrence of 
mode mixing [55]. This drawback has motivated 
researcher to propose an ensemble empirical 
mode decomposition (EEMD)[86]. EEMD 
decomposing technique add finite noise to the 
signal that can address the mode mixing problem 
of EMD [55][46].  

The use of EEMD has effectively improve the 
forecasting model. It also found that the use of 
different length time series data in EEMD could 
produce various performance of the model in 
which the decomposition and model must be 
updated whenever new information is added [41]. 
The self-adaptability of EMD and EEMD can be 
the point of difficulty when applying this method 
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as different time series will produce different 
number of IMFs. This will form disagreement of 
the input data during training and forecasting 
phase [59]. Although EEMD seems to stabilize 
the obtained decomposition, but it increases the 
computational cost [87].  

Cross Correlation Function (CCF) function is 
used to select important variables for the model 
[60]. It is measuring the linearity of similarity 
between two signals. CCF is used in studies [73] 
to determine time lag and input variables for the 
model. Genetic Algorithm (GA) is an 
optimization method based on the principles of 
genetics and natural selection [49]. It relies on 
operators inspired by the biological process such 
as mutation, crossover, and selection. GA has 
been used to optimize input for the model [33][65] 
and finding optimal kernel function for the model 
parameters [49]. Differential Evolution (DE) has 
been introduced to address the drawback of GA in 
lack of local search [88]. It can provide solution 
for a complex problem with the least error. 
Although DE has overcome GA drawback, but it 
can be too stochastic or too greedy. 

Other methods used in pre-processing is 
Auto-correlation function (ACF) and the Partial 
auto-correlation function (PACF) to find the most 
correlated inputs to perform the model effectively 
[61][75]. Aggregation is used to transform 
original data series into monthly data series [72]. 
Singular Spectrum Analysis (SSA) has been used 
and prove to eliminate the boundary effect 
problem occurred when using DWT and EMD 
methods [66]. Maximum Relevance-Minimum 
Redundancy (MRMR) method is employed to 
select the most effective forecasting features from 
the climate signals [71]. Seasonal-Trend 
Decomposition Using Loess (STL) is used to 
splits time series data into trend and seasonal. 
Loess smoothing then apply to determine and 
estimate the seasonal component and trend 
component [59]. STL helps in improving the 
accuracy of the estimated components. 

The application of pre-processing technique 
playing an important role as it provides 
optimization to the selection of the input 
parameters to the model. The studies indicate that 
the behaviour of the model is improving when 
pre-processing is done resulting better forecast 
accuracy. The pre-processing techniques also can 
be difficult to perform such as EMD, EEMD and 
STL due to their self-adaptability. It is revealed 
that some pre-processing techniques is superior to 

the others. In their study DWT has outperformed 
EMD in term of the model performance [33]. 

4.3 Performance Measurements 
 

In the ideal situation, the forecasting model 
will be evaluated using performance 
measurements. Evaluation might be used to 
generalize the result and comparing the forecast 
model to a reasonable alternative [89]. The 
evaluation of forecast model can be done during 
the training and testing stage. From the primary 
studies, evaluation is done by examining the 
outputs.  The primary concern of the evaluation is 
accuracy and performance of the model. Figure 6 
indicates the performance measurements used by 
the researchers. The models might be assessed by 
single evaluation measurement or combination of 
multiple measurements. 

 
It is revealed that the most performance 

measurement used by the researchers is Root 
Mean Square Errors (RMSE), followed by Mean 
Absolute Error (MAE), Nash-Sutcliffe Efficiency 
(NSE), Correlation Coefficient (R), Coefficient of 
Determination (R2) and Mean Absolute Percent 
Error (MAPE). MAE is a simple measure of 
forecast accuracy. It calculates the absolute error 
in which the absolute value of the difference 
between the actual and forecasted value. It 
provides the researcher information on how great 
the error that can be accept from the forecast on 
average. MAE can be a problem when the relative 
size of error is not obvious where the different 
between small error and big error cannot be tell.  

 
MAPE overcome this problem by providing 

the mean absolute error in the term of percentage. 
MAPE allowed the researcher to make 
comparison between different series and scale of 
data. MAE and MAPE focusing on the mean error 
but sometimes error can be big but infrequent. 
This kind of rare errors can be adjusted by using 
RMSE. RMSE squaring the errors before the 
mean calculation been done. The square root of 
the mean than calculated to measure the error in 
which will giving more weight to infrequent large 
error.  

 
Correlation Coefficient (R) is used to 

measure the greatness of relationship between 
data or variables. The strength of the relationship 
denotes by the value of the correlation coefficient, 
in which the larger value giving the stronger 
relationship.
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Figure 6: Performance Measurements

Coefficient of Determination (R2) in the other 
hand is literally the square value of the 
correlation. It denotes the percentage of the 
response variable variation that is explained by a 
model. Although correlation coefficient and 
coefficient of determination would provide 
goodness of fit index, in theory, it only applicable 
to linear models. Furthermore, the computed 
value can be poor estimated due to model bias 
[89]. 
 

To overcome the limitation of correlation 
coefficient, NSE is proposed to be used as an 
alternative to calculate the efficiency of the 
hydrological model. It describes the accuracy of 
the forecast model as long as it can be compared 
to the observed data. The advantages of NSE are 
it can be applied to various type of model 
including the nonlinear model. Although NSE is a 
great alternative for assessing the goodness of fit 
of a model, it is difficult to interpret as the 
sampling distribution is not presented resulting 
only subjective interpretation can be made 
towards the sample values [89]. The evaluation 
measurement in general is used to prove how the 
models being developed can accurately predicted 
the forecast value. 

5. CONCLUSION 

Research studies over the recent years on the 
use of machine learning in long-term flood 
forecasting has shown a great interest among the 

researchers. Machine learning can analyse the 
historical data without knowing the underlying 
process and has the self-adaptive capability in 
which it iteratively adapts when exposed to new 
data. The non-linearity and non-stationary of 
hydrological data is a challenging factor in 
providing an accurate forecast. There is various 
type of hydrological data used in flood forecasting 
including rainfall, streamflow, runoff, and climate 
signals. Rainfall data is widely used by the 
primary studies and the use of it as input has 
contributed to the accurate forecasting.  

To provide meaningful input to the long-term 
flood forecasting model, optimization of the 
nonlinear hydrological time series data is crucial. 
Addressing this issue, many primary studies has 
implemented optimization method in pre-
processing phase. Optimization method helps the 
features of the data interpreted by the models. 
Methods such as Wavelet Transform (WT) and 
Empirical Ensemble Mode Decomposition 
(EEMD) are widely used in which signals are 
decomposed into specific modes and self-
adapting.  

Long-term flood forecasting model can be 
developed using single or through hybridization. 
Models which are hybrid with optimization 
techniques or other conventional model has been 
proved to outperformed single model in most of 
the studies.  Developed machine learning models 
must be evaluated to measure the performance 
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and accuracy. Various evaluation measurement 
can be used such as RMSE, MAE and NSE. 

This study presents the systematic literature 
review of machine learning model in long-term 
flood forecasting.  The objective is to provide 
insights of machine learning models in long-term 
flood forecasting by gathering and analysing the 
knowledge from the literature to facilitate 
researchers in future studies in the same domain. 
This study collected data from primary studies in 
various repositories. Forty (40) primary papers are 
identified which is published either in journals, 
conferences, or chapters. All of them are passed 
the quality assessment. Data are extracted and 
analyse to provide information regarding of 
machine learning model in long-term flood 
forecasting.  

From this study, it is found that although 
there are many literatures proving the 
performances of various machine learning models 
but there is no certain conclusion been made as 
which model is the best in long-term flood 
forecasting. Among the factors that influenced the 
performances are, the input type, pre-processing 
methods, and location. 

For the machine learning models to perform 
well with minimal error, it is proposed that the 
development stages adopted three strategies. The 
first strategy involved optimizing the original 
input with optimization method such as wavelet 
decomposition that can analyse the data and 
extract pertinent information to be used as input 
for the model. Second strategy is to optimize 
existing machine learning algorithm by tuning the 
hyperparameters or modifying the algorithm with 
additional optimizer. The last strategy is to hybrid 
the machine learning models. Hybridization can 
be done between 2 or several machine learning 
models through integration or ensemble. These 
strategies can be implemented in the development 
of machine learning model for long-term flood 
forecasting either single or in collective manner. 

The in-depth review of this study can be 
critical resources for researcher and provide 
guidance in determining a suitable machine 
learning models to be developed for the purpose 
of forecasting. Nevertheless, this study does have 
its limitations. First limitation is this study only 
used six of the widely literature repositories that 
available. Secondly, Search strategy is performed 
with limited keywords to get only related 
literatures. Keyword search is not used in Google 

Scholar to avoid all papers being listed with those 
keywords. Thirdly, paper might be skipped during 
the search strategy although their domain is 
related. This is due their study does not use the 
term at all. This study can be a valuable resource 
for researchers in equipping them with the 
insights and detail of the use of machine learning 
in long-term flood forecasting. 

To help researchers gaining more insights 
and knowledge of the machine learning models in 
long-term flood forecasting, it is suggested that 
future work involve conducting thorough review 
on the hybridization of the models. This is due to 
the potential of hybridization techniques that 
harness the advantages of several algorithm that 
can help in improving the model performance. 
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