
Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

ENHANCING DOCUMENT REPRESENTATIONS WITH
SYNONYMS GRAPH NODE EMBEDDINGS

1ROMAN SHAPTALA, 2GENNADIY KYSELOV
1PdD Student, NTUU “Igor Sikorsky KPI”, Institute for Applied System Analysis, Department of System

Design, Kyiv, Ukraine

2Associate Professor, NTUU “Igor Sikorsky KPI”, Institute for Applied System Analysis, Department of

System Design, Kyiv, Ukraine

E-mail: 1r.shaptala@gmail.com, 2g.kyselov@gmail.com

ABSTRACT

Document representations are a key element in solving natural language processing problems, including
document classification, clustering, and topic modelling. Modern deep learning-based techniques are able to
build such representations with great success. However, they require a lot of data to do so, thus are not
applicable in the low-resource setting. Recently, low-resource NLP methods focused on transfer learning
approaches which assume the existence of pretrained models, as well as data augmentation approaches which
expand available datasets. Our key idea is to use a synonyms dictionary as a transfer learning tool instead of
a source for token-level document augmentation. Consequently, the objective of this study is to investigate
the improvement of existing document embedding methods in a low-resource setting by the incorporation of
synonym dictionary information. Our main research contributions are the demonstration of the effectiveness
of synonym node embeddings as a transfer learning method for building document representations and the
proposal of a method for enhancing document representations by mixing them with an average of node
vectors of words from a synonyms graph of the low-resource language. The experiments show a 2% F-score
improvement for Kyiv City petitions topic classification in Ukrainian. The analysis and optimal
hyperparameters for training a Node2Vec graph embeddings model as well as the weighted sum fusion of
baseline and synonym embeddings are provided. Future work can explore the impact of other node
embedding methods or the application of other linguistic dictionaries in a similar fashion.

Keywords: Low-Resource Natural Language Processing, Node Embeddings, Document Embeddings,
Synonyms, Document Classification

1. INTRODUCTION

Linguistic analyses that operate on the
semantic and pragmatic level are common natural
language processing tasks. These are the problems
that require the machine to understand the meaning
of sentences or documents, e.g., text summarization,
sentiment analysis, and topic clustering. Usually the
general term of “document” refers to any
semantically coherent piece of text – a sequence of
words – it can be a sentence, a paragraph, or a book.
It is not difficult to imagine the range of applications
that benefit from automated document modelling, be
it customer review categorization or disease
diagnosis.

Since natural languages are not “native” to
computer processors, the search of a way to
optimally represent text digitally is an active area of
research. The general concept of such methods is to

encode texts as dense vectors of floats in an
embedding space that preserves linguistic properties
of the objects in question. This turns freeform text
into mathematical entities and makes it easy to
compare documents by distance functions as well as
cluster them.

Currently however, the most sophisticated
methods for building document representations are
training them as a part of an end-to-end deep learning
process via highly-parameterized models like
transformers [1]. Although, extremely powerful, the
method requires huge amounts of data and
processing time. Our research focuses on how to
build document embeddings in a low-resource
setting, where trainable corpora is limited, e.g., in an
underrepresented language on the Web.

Most of the natural language processing
(NLP) research nowadays focuses on big data
applications or explores the most popular languages,

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

English in particular. As a result, a lot of approaches
developed assume the availability of significantly
sized resources from which a corpus can be
retrieved. For example, pre-training of BERT [1] is
done on the BooksCorpus [2] and English Wikipedia
which results in 3,300M words combined. Such huge
bodies of text are not available for other languages,
even with today’s prevalence of user-generated
content on the Internet.

Low-resource scenarios can have different
roots, but one thing that they have in common is the
limited amount of labeled data. In NLP typically
there are several possible reasons for this problem: a
language that is unpopular and quality labelling is
costly and impractical, or a task that is non-standard
and heavily relies on domain-specific linguistic
structures. Since there is only a limited amount of
information in such datasets, most of the solutions in
low-resource settings try to get as much additional
bits of information from other sources as possible.
This leads to the expansion of assumptions that are
needed to be satisfied before the algorithms can be
used. As a result, the development of new methods
with fewer or less restrictive assumptions is an
important natural language processing task.

The overall objective of this study is to
investigate the improvement of existing baseline
document embedding methods in a low-resource
setting by the incorporation of synonym dictionary
information. This entails the development of
synonym words and synonym document
representations and the analysis of methods of their
combination with baseline document
representations. Furthermore, this paper aims to
incite a discussion on the fusion of natural language
processing methods and dictionary-based
information via graph embedding methods.

2. LITERATURE REVIEW

There exist many ways to build document
encodings. The most basic one is Bag of Words
(BOW) [3], where each word is represented as an
index in a dictionary and the document is just a
sparse vector of indices of its words. A popular
generalization of this method, called Term
Frequency-Inverse Document Frequency (TF-IDF)
[4], addresses BOW’s issue of ignoring the overall
word-document frequency statistics by reweighting
word contributions to the document vector based on
the fraction of documents that include the word. This
generally makes common words that do not contain
much information to be less impactful on the
resulting representation. These two methods are
examples of statistical representations. They do not

require any training and work well in a number of
applications. However, resulting document vectors
are sparse and very high-dimensional, as their size is
defined by the size of the dictionary. This makes
them difficult to query or use in machine learning
pipelines.

An alternative branch of methods is based
on the combination of word embeddings built on top
of the distributional hypothesis: words that appear in
similar contexts have similar meanings [3]. These
word vectors are usually trained as a part of a self-
supervised process or a different machine learning
pipeline while solving an NLP task end-to-end. The
resulting word embeddings are dense and low-
dimensional, which makes them more appealing for
transfer learning [5]. This type of methods is also
called neural, because they were first introduced as a
part of neural network language model [6]. However,
it is unclear how to combine word embeddings into
a document embedding. Several methods have been
proposed for this, the most popular baseline being –
take a per-dimension average of word vectors
present in the document [7]. Namely, given a set of
word vectors S, where Si Rm i [z] and z is the
size of word embedding dictionary, the r’th element
of the baseline embedding of document j consisting
of n words becomes:

Wjr =

n

i 1

Sir / n (1)

A recent survey of low-resource natural
language processing methods was done by Michael
A. Hedderich et. al in [8]. Most of the approaches in
this setting fall into two categories: generating
additional labeled data or transfer learning. The
categorization of methods to solve NLP problems in
a low-resource setting is shown in figure 1.

Generation of substitutes for gold-standard
data is an idea that came from computer vision [9],
where the transformations of images, e.g., cropping,
rotation or zooming, create additional training points
and enhance the performance on a wide-variety of

Figure 1: Classification of low-resource natural
language processing methods

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

tasks. In natural language processing, however, the
transformations are less obvious and require
extensive knowledge of the language in question.
Moreover, they can introduce wrong or unnatural
examples into the dataset, so have to be used with
care. These data augmentation techniques include:
the simulation of keyboard error (substituting words
that are frequently mistyped), synonym and antonym
substitution, random word splitting etc. A different
way of generating additional labeled data is distant
supervision [10]. It is mostly concerned about
labeling unlabeled data based on simple rules,
entities in knowledge bases or ontologies. Distant
supervision works well for a number of low-resource
settings because it is able to extract high-precision
patterns that uniquely identify certain classes. This
approach is generally used on named-entity-
recognition or various syntactic and morphological
tasks, and is rarely applicable to the problem we are
trying to solve. Moreover, it assumes that unlabeled
data exist which is not always possible in a low-
resource setting. For example, authors of [11]
propose to generate weakly labeled data to combat
the scarcity of available resources via contextualized
representations for instances where rules cannot be
used. This is done by building a separate self-trained
student model which suggests pseudo-labels for
datapoints where typical rule-based weak
supervision does not work. While the approach leads
to significant improvements in accuracy for question
and spam classification, the method relies on the
existence of additional data points which can be
labeled via weak supervision. Depending on the
source of the lack of resources, for certain settings
distant supervision methods might not be available.
For example, highly specific or recently designed
engineering entities might not exist in available
knowledge bases, so it is impossible to build rules for
distant supervision that cover them.
 Another interesting data augmentation
approach that has been introduced recently is data
augmentation using pre-trained transformer models
[12]. Here the effectiveness of using pre-trained
language models for new training samples
generation is explored. The authors show that
autoencoding, autoregressive and seq2seq pre-
trained models can be conditioned on available
labels to generate new labeled datapoints thus
enhancing the performance of typical document
classification models. Although this method is
extremely powerful given the strength of modern
transformer-based pre-trained models, it still
assumes that these models exist and were trained on
a huge corpus of natural language data. This makes
it not applicable to any low-resource languages

which lack labeled or unlabeled data to train such
transformers.

Transfer learning methods, on the other
hand, are less concerned about data and more
concerned about prebuilt models that capture
language features and can be reused between tasks.
This type of approaches is highly successful because
once the original model is trained, its weights are
easily sharable between tasks and might contribute
positively and add out-of-scope knowledge to a new
task. Still, however, these transferred models need to
be learned, which requires a separate dataset, usually
large and unlabeled, and a significant time and
hardware investment for their training process.
Moreover, for transfer learning to work, the original
problem should be similar to the one at hand, so that
the transfer is positive. This can be difficult to
achieve when you’re trying to solve a domain-
specific problem.

A comparison of basic statistical and
transfer learning methods for publications clustering
was done in [13]. By testing TF-IDF, Word2Vec
averaging and end-to-end methods on a dataset of
15907 documents the authors conclude that there
was little difference between their performance, but
Word2Vec averages are the optimal strategy towards
document clustering because of its contextual
sensitivity. One limitation of their research is that
they’ve only tested one clustering algorithm, namely
K-Means clustering, which requires the number of
clusters to be determined in advance, as well as the
use of Euclidean distance. Also, this clustering
method assumes that clusters have normal
distributions in the embedding spaces, which may
not be the case in all of the domains.

To our knowledge, using synonyms graph
information as a transfer learning method for
document representation has not been explored yet.
This is contrary to the common data augmentation
method that builds additional data samples by
swapping synonymous words in documents [14].
This approach is not easily transferable and requires
custom logic to work. Having an embedding-based
transfer learning solution would facilitate decoupling
of language synonymy representation and the
process of document classification models training,
so that basic word relatedness information could be
shared between tasks.

3. PROPOSED SOLUTION

The method we introduce in this paper can
be classified into the transfer learning category. Most
of the transfer learning ideas rely on an abundance of
unlabeled texts in the same low-resource language,

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

73

for example the Wikipedia [15], or a reuse of labeled
resources in other languages via cross-lingual
models. Our assumption is different – we do not
expect to get additional implicit labeled data, but we
do want to leverage extra language information that
is provided by a synonym dictionary, thus it needs to
exist in the task-related language. We believe that
this assumption is true in a lot of low-resource
languages, as synonymy is a fundamental linguistic
feature that has been studied extensively for a long
time [16] and the dictionaries are systemically
updated by linguists in different countries. A
synonym dictionary is a mapping from words to lists
of their synonyms.

A typical document classification pipeline
consists of building document vectors by any of the
aforementioned methods, e.g., Word2Vec [5] word
vectors averaging, then training a supervised
learning model to classify the document. We propose
to add another source of document vectors, namely
synonym vectors, to the baseline document vectors,
and proceed with learning on the mixed set of
embeddings. The intuition behind this is that by
adding explicit synonymy information the classifier
will be able to connect documents that were
previously seen as lacking common elements, thus
strengthening its decision making.

Three key questions arrive when we talk
about adding synonym dictionary information to
already established document classification
methods:

1. How do we represent synonymy and convert
the dictionary into a format that is useful?

2. How do we combine synonyms
representations into document synonyms
representations?

3. How do we combine document synonyms
representations with baseline document
vectors?

3.1 Synonyms Graph Node Embeddings

Since the most natural mathematical
representation for synonymy is a graph where nodes
represent words and edges represent synonymy, we
propose to use graph embedding techniques [17] to
encode its nodes. These techniques represent
networks in a vector space, preserving the key
features of the graph. This allows for an additional
layer of abstraction for a multitude of graph-related
tasks, as node and edge embeddings can be
transferred or fit a typical classifier on top of, instead
of building a non-generalizable solution to a concrete
graph.

Let G denote the graph of synonyms in a
certain language. Every word that has a synonym

forms a set of nodes V and if two words i and j are
synonymic, there exists an edge from the set of edges
E between Vi and Vj. The total number of nodes n is
equivalent to the number of unique words in the
synonyms dictionary. We do not put weights on
edges, because of the lack of information, but future
research may look at adding weights proportional to
the frequency of these words appearing in the same
contexts in a large corpus of texts. Another
weighting scheme that might be applicable is when
partial synonyms (those that have subtle differences)
get lower weights than absolute synonyms. The
graph is also undirected, because of the underlying
symmetry of synonymy. Then, a node embedding is
a mapping f: Vi Hi Rd i [n]; d << n and the
mapping keeps graph structural and connectivity
properties intact.

A great review of modern graph embedding
approaches was written by Palash Goyal and Emilio
Ferrara [18]. There, the classification, advantages
and disadvantages of aforementioned methods are
listed. We summarize the classification in figure 2
and choose a random walk-based method, called
Node2Vec [19], as the way to create synonyms graph
node embeddings in our experiments. Node2Vec is
trained to maximize the likelihood of preserving
network neighborhoods of nodes. The process
basically consists of two steps: biased random walk
generation and node weights optimization. The first
step outputs sequences of synonyms with different
length, so that the model can learn both local and
global features of the synonyms graph. The second
step runs an iterative procedure that updates
randomly initialized node embeddings according to
the embeddings of its context nodes. Context nodes
are the ones on the left and right of a certain node in
a sequence generated by the random walk. The
choice was made based on the fact that Node2Vec
models community structures and structural
equivalence between nodes well [20]. This also
makes our approach an example of the embedding
subcategory of transfer learning methods.

Figure 2: Classification of graph embedding approaches

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

74

To create a synonym embedding for the
whole document, we need to aggregate node
embeddings corresponding to the words appearing in
the document. A procedure, similar to how baseline
Word2Vec aggregation for documents works
(Equation 1), can be used. A document of t words
produces a set of embeddings, each of size d. These
vectors get averaged along each dimension to
produce a single vector of size d. If a word is not
present in the synonym dictionary it is ignored and
do not take part in any of the calculations related to
synonym embeddings. If every word in a document
does not have any synonyms, so that it’s not in the
dictionary, synonym embedding becomes a vector of
zeros of size d. This is done, so that such documents
do not change their representation during the
combination with baseline document embeddings if
summation is used.

3.2 Embeddings Fusion

As for the combination of synonym with
document representations, we can apply approaches
explored in multimodal machine learning studies. In
this context the process is called fusion, and the least
complex form of fusion is Simple operation-based
fusion [21]. It can be of two types: concatenation and
weighted sums. Figures 3 and 4 show how both of
these methods can be applied for the solution of the
given task.

Both methods perform a transformation g:
Wi Rm, Hi Rd Ui Rk i n; where Wi is a
document vector of size m obtained by a classical
method, Hi is a synonyms vector of size d, and k is
the resulting size of the embedding. For
concatenation k = m + d. Weighted sums require m
to equal d and the resulting size k is equal to m.
There is an important detail in the weighted sums
scheme of fusion – the weights that baseline and
synonyms vectors are multiplied by. More

Figure 3: Concatenation-based document and synonym
vectors fusion

Figure 4: Weighted summation-based document and
synonym embeddings fusion

specifically, the equation that governs weighted sum
fusion of baseline and synonym embeddings in this
work is:

U୧ = αW୧ + βH୧ (2),

where Wi is the baseline document vector,
Hi is the synonym document vector, is the weight
of baseline embeddings and is the weight of
synonym embeddings.

Both hyperparameters and can be
interpreted as the level of contribution of each of the
types of embeddings towards the final vector. We do
not restrict to be 1-, with an intuition that
synonym vectors add new information to the task,
and should not get in the way of baseline vectors if it
is not the optimal way to do.

Since statistical encoding approaches like
BOW or TF-IDF produce sparse and highly
dimensional vectors, the fusion step for them is
unclear. One might argue that it is possible to use
dimensionality reduction techniques to convert these
vectors into low-dimensional dense representations.
However, this would make the experiment more
convoluted by the introduction of a separate set of
meta- and hyperparameters. This is why we restrict
the selection of baseline document embeddings to
Word2Vec-based and explore the impact of both
fusion approaches on the document classification
task in a low-resource setting. However, we compare
the performance of TF-IDF-based classification
method with the proposed one.

All in all, main contributions of this paper
are two-fold: (1) we demonstrate the effectiveness of
synonym node embeddings as a transfer learning
method for building document representations; (2)
we introduce a new method to improve document
representation and classification in a low-resource
setting through the creation, fusion, and use of

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

75

synonym embeddings trained on a graph of
synonyms via node embedding techniques. This
shows that synonym graphs can be used not only as
a data augmentation technique for new samples
generation, but also as a document representation
improvement method. We also provide practical
recommendations on the implementation of different
parts of the proposed method, including word,
document, and synonym dictionary embedding
model hyperparameters, document preprocessing
steps and the choice of an embeddings fusion
algorithm.

4. EXPERIMENTAL SETUP

For the experimental part of our research, a
dataset of Kyiv City petitions was used. It has been
collected automatically from the Kyiv State
Administration Petitions portal [22] which gives an
opportunity for citizens to influence urban decision
making. All of the petitions on the website are
manually classified into different categories:
'Transport', 'Landscaping and environment', 'Streets
naming', 'Housing', 'Urban planning', 'Culture and
education', 'Health and sports', 'Parking',
'Spontaneous trade', 'Social protection', 'Animals',
'Law and order', 'Budget', 'Waste' and 'Other'.
Automation of the process of petition categorization
could save administration workers some time as well
as make the pipeline of petitions analysis more
manageable. This task is an example of a low-
resource setting because of two reasons: the low
amount of labeled data and the Ukrainian language
the petitions are written in. We describe the dataset
in more detail in the next section. As for the
language, although there are estimated 40 million
native speakers, it is very underrepresented on the
Web - only 0.6% of websites have contents written
in Ukrainian [23] - so there is a limited number of
high-quality resources which can be used to train or
enhance models. This is why the search of
alternative techniques is a very practical and active
area of research.

4.1 Classification Dataset

Originally, the dataset of Kyiv City
Petitions consists of 6560 petitions. Since most of
Kyiv citizens can write in at least two languages,
Ukrainian and Russian, language classification had
to be done on every point in the dataset. We used
pretrained FastText language classifier [24], [25] - a
neural network-based model - to automatically label
all of the petitions with their languages. Our previous
work explored the effectiveness of this method and
it turned out to be very reliable with almost perfect

0.99 precision, recall and F1-scores. After the
removal of non-Ukrainian petitions, as well as the
process of deduplication, only 5332 are left for the
remaining research.

One common problem in all low-resource
classification settings is the imbalance of target
labels. Kyiv City Petitions dataset is no exception
and this imbalance is at the core of the classification
task as different aspects of living in an urban
environment produce different amount of citizen
outcry. Some of the classes in our dataset take less
than 1% of all samples each, so we decided to
remove them from the investigation until they collect
enough mass. This further reduced the number of
datapoints available for training to 4993. We show
the final distribution of datapoints between classes in
figure 5.

Length of the sequence of words is an
important consideration for the selection of methods
to model it, but for the sake of our research, a
document is a varied-length text of several
paragraphs. The distribution of the number of tokens
throughout documents is shown in figure 6.
Although most of the documents in the Kyiv City
petitions dataset have a relatively low number of
words, there are also outliers with as low as a single
word and as high as 860 words. Other statistical
features of the dataset include: total number of words
– 368046, number of unique words – 65374, average
words per document – 74, average length of a
document – 780 characters, average characters per
word – 7.

In order to increase the performance of
machine learning methods, the dataset is then put

Figure 5: Kyiv City petitions dataset document
classification label distribution

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

Figure 6: Kyiv City petitions dataset documents word
count distribution

through a number of preprocessing steps. The first
one is the removal of stop-words – frequent but
mostly irrelevant to the classification task tokens
with an intention of limiting their impact during
vector averaging and fusion, as well as reducing the
size of word embedding vocabulary. The second one
is whitespace normalization where we reduce
multiple consecutive whitespace characters into a
single space to simplify the tokenization process.
Since urban petitions are full of street and political
figures’ names and the case with which people write
them is variable, we lowercase every piece of text in
order to have more consistent representations.
Finally, all of the invisible or non-unicode characters
get stripped from the documents.

Now, we are going to define the testing
framework for our research. We split full document
classification dataset after the application of
preprocessing steps into two subsets: training (75%)
and validation (25%). Validation dataset is used to
report all of the results in the following chapter.
Given the imbalances present in the dataset we use a
stratified validation split, so that the distributions of
labels in both training and validation subsets are
similar. For the same reason we report weighted by
the support of each class average F1-scores instead
of accuracy which is susceptible to label imbalances.
We compare the proposed model with the baseline
model (without synonyms information) and with
statistical natural language processing approaches
which usually perform better in low-resource
settings. All of the compared models had their
hyperparameters tuned via grid search so that their
choice does not influence the differences in metrics.

4.2 Synonyms Graph
To build a synonyms graph of Ukrainian

language we used synonyms dictionary from the
Official Website of the Ukrainian Language [26].
Since this is an online dictionary, some element of
preprocessing was required to transform its words
into the same form as the ones in the classification
dataset. These preprocessing steps include: removal
of sentence examples, context and abbreviations;
lowercasing and deduplication. Afterwards, we
created an empty undirected unweighted graph and
populated it with words as nodes and if two words
are synonyms, the corresponding nodes get
connected with an edge. The synonyms graph
statistics are shown in table 1 and its degree
distribution can be seen in figure 7. From the
analysis of graph properties one can conclude that
synonymy in the Ukrainian language can be very
deep and there exist many alternatives on how a
single thought can be expressed, which further
strengthens the assumption that adding synonym
dictionary information to baseline models is useful
for document classification. The expected quality of
trained synonym embeddings is that the connected
components in a graph are close in terms of a
selected distance function while nodes that exist in
separate subgraphs are further apart in the
embedding space.

5. RESULTS

5.1 Baseline Document Embeddings

As previously mentioned, to build baseline
document embeddings we need to train
corresponding Word2Vec word embeddings first.
This is done on the preprocessed document
classification dataset and since this task is self-
supervised, labels are not taken into account at this
step in the pipeline. As an additional consistency
precaution, we remove words that appear less than
20 times in our dataset. Word2Vec model details:
output vector dimensionality – 100, learning rate –
0.025, context window – 5, training epochs – 1000,
training algorithm – Adam [27], model – skipgram,
objective function modification – negative sampling
with 5 negative samples. Since the size of the dataset

Table 1: Synonyms graph statistics

Statistic Value
Nodes 44664
Edges 391047

Average Degree 8.755
Number of connected components 545

Max clique size 44
Average Clustering 0.797

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

77

Figure 7: Synonyms graph node degree distribution

is not large, the training does not require a GPU and
took around half an hour on a 2.8 GHz Intel Core i5
processor using four workers.

The resulting word vector space exhibits
the properties that we were seeking, namely
semantically similar words have small distances
between each other, while semantically different
words have large distances. Measure of distance that
is frequently used in word vector spaces is cosine
distance. The complement of cosine distance is
cosine similarity and is defined as:

S(V, W) =

‖‖‖‖
=

∑

సభ

ට∑
మ

సభ ට∑
మ

సభ

,

 where V and W are word embeddings of
size n. Cosine distance is then simply equal to 1 –
S(V, W). For example, in our trained word
embedding space cosine distance between words
“street” and “avenue” is 0.466, while the distance
between words “street” and “car” is 0.996.
 After we apply our baseline model – the
averaging of word vectors we get a vector space of
Kyiv City petitions where the same distances logic
applies. This vector space can be used for document
similarity queries and clustering. We can check the
Silhouette Coefficient [28] to evaluate how cohesive
the clustering of petition vector space can be. For
that purpose, we first cluster our baseline petition
vectors with DBSCAN [29] and report the Silhouette
Coefficient on the results of clustering. It takes the
value of 0.468 which means that baseline documents
embeddings are appropriate for clustering and
capture the differences between documents
relatively well.

5.2 Synonym Document Embeddings

Similarly, to build synonym document
embeddings we first trained synonym node
embeddings. This time, though, we do not filter out

low-frequency words, because we are trying to
model every node in the graph. Hyperparameters of
the Node2Vec algorithm that worked well for our
experiment are: output vector dimensionality – 100
(governed by the dimensionality of baseline
embeddings for easier fusion), random walk length
– 5, number of walks – 100, learning rate – 0.1,
context window – 5, p return hyperparameter – 1, q
inout hyperparameter - 1, training epochs – 5,
training algorithm - Adam, model – skipgram,
objective function modification – negative sampling
with 50 negative samples. Training took 3 hours on
the same machine where the baseline document
embeddings were trained.

Since the whole concept of training node
embeddings for the synonymy graph was to get
dense node representations that encode synonymy,
the distances between synonymic words should be
significantly smaller than between random words.
Our trained node embeddings show this property. A
similar to the previous subsection setting but in
synonym word embeddings yields the following
results: distance between “street” and “avenue” is
0.121, while the distance between nodes “street” and
“car” is 0.735. As a result of a qualitative analysis of
the resulting node vectors we could observe that
these vectors are more distinctive than Word2Vec
word vectors, which makes sense because they were
trained on a well-defined inherently clustered
structure instead of real texts where synonymy can
only be captured by tracking contexts which are very
limited in a low-resource setting.

Document embeddings based on synonyms
node embeddings also exhibit promising behavior
with a Silhouette Coefficient equal to 0.863. This
indicates that the synonyms-based document
embedding space can be clustered easily and since
this score is significantly different from baseline
embeddings, might give an edge in the document
classification task.

5.3 Document Classification

After both baseline and synonym document
vectors are ready, we can start document
classification. Because of its predictive power and
non-linear qualities, a simple neural network – a
multilayered perceptron was chosen as the
classification method. We train and compare four
classifiers with different document representations,
namely: TF-IDF, baseline Word2Vec average of
word vectors, baseline vectors concatenated with
synonyms vectors, and baseline vectors fused by a
weighted sum with synonyms vectors. We perform

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

78

hyperparameters search for every model-vector
combination to limit the possibility of random
initialization or extra parameters influencing the
reported scores and the nature of positive impact.
The resulting metrics are shown in Table 2. From it
we can see that the weighted sum method
outperforms other classification procedures by at
least 2% while the concatenation method does not
yield significant improvements over the baseline.

The difference between confusion matrices
of the baseline and our best models is shown in
figure 8. Positive values on the diagonal and
negative values on non-diagonal places correspond
to improvements in classification of a certain class.
Considering the label distribution in the dataset, it
can be stated that the enhanced model helped capture
some nuance in low-frequency classes, but improved
better represented labels classification only minorly.

5.4 and Selection

Since the values of and have a great
influence on the performance of our method, we
include the analysis of their optimal values. To
deduce them we ran a grid search algorithm with full
pipeline retraining and validation. We varied both
and values from -1.5 to 1.5 in 0.02 increments,
which resulted in 22500 experiments. The results are
presented in figure 9. Smaller absolute values of
together with larger absolute values of result in
higher weighted F1-scores in our experimental
setting which corresponds to the assumption that
synonym information is only an enhancement of
baseline vectors. Moreover, synonym embeddings
are not sufficient to completely replace baseline
embeddings as they lack the specificity and details
that are present in practical applications. For
example, street names cannot be captured by
synonym embeddings since it is impossible for them
to have synonyms. This can be seen in the area of the
space where is close to zero and is varied. The
absolute maximum of metrics that were achieved
during our experiments is described by = 1.4 and

Table 2: Scores of different document representation
approaches on document classification

Approach Weighted F1-Score
TF-IDF 0.639

Baseline (Word2Vec
averaging)

0.637

Baseline concatenated with
synonym embeddings

0.640

Weighed sum of baseline
and synonym embeddings

0.659

Figure 8: Baseline and weighted-sum fusion synonyms
embeddings confusion matrices difference

 = 0.14. We also provide the results of the
abovementioned grid search with a different metric
– macro F1, which does not take label imbalance into
account, in figure 10 and the space of optimal
weighted sum fusion hyperparameters looks similar.

 One possible explanation for the positive
results of our study could simply be a regularization
effect of noise that is introduced as the synonym
graph embeddings, similar to [14] and [30].
However, we believe that it is not the case for two
reasons: (1) we experimented with adding noise to
the baseline document embedding framework and it
did not improve the results; (2) if it were noise-
related regularization, we would see a symmetrical
decay of scores around = 1.0 while varying
hyperparameter.

Figure 9: and hyperparameters weighted F1-score
impact

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

79

Figure 10: and hyperparameters macro F1-score
impact

6. CONCLUSION

The research in this paper focused on the
task of document representation and classification in
low-resource settings. We propose a way to increase
the predictive power of baseline vector-based
models by incorporating additional synonymy
information explicitly. This can be done via fusion
of baseline document embeddings with node
embeddings of a language synonyms graph. To build
such node embeddings a random walk-based graph
embedding method can be applied and we show
Node2Vec to be successful in this regard. The main
assumption of our research is that language synonym
dictionaries are available, which may not be the case
in all low-resource settings, for example, in
languages where the linguistic science and
community is still developing.

The described method falls into the
category of embedding-based transfer learning low-
resource natural language processing methods
because it transfers the information from a different
source, namely synonyms dictionary, via graph
embeddings to the document classification task.

Our experiments tested two fusion
techniques: concatenation and weighted summation.
To ensure a low-resource setting we used a dataset
of Kyiv City petitions written in Ukrainian which
has a limited amount of extra high-quality datasets
to reuse information from. Ukrainian synonyms
dictionary provided the means to build an undirected
graph from which embeddings were learned by the
Node2Vec algorithm. The developed model resulted
in a 2% increase of weighted F1-scores over the
baseline model when weighted summation is used.
Concatenation of baseline and synonyms document
vectors did not show significant improvements to be
useful. We also provide an analysis of weighted

summation hyperparameters and list optimal values
of weights for achieving the best results.

Future research can go into several
directions. Firstly, it is possible to check the impact
of other graph embedding approaches and
algorithms on the resulting metrics and compare
them. Since the size of synonym dictionaries is
relatively stable, this investigation can also explore
the time needed to build synonym embeddings, as
random walk-based methods usually take a lot of
time to train and are very sensitive to
hyperparameters. Secondly, one can explore the
fusion with other types of linguistic information that
is incorporated in a graph-like form, e.g.,
etymological or referential meaning dictionaries. If
this is proven to have a positive impact on the
document classification performance, the next
logical step would be to combine several graph-
based embeddings and check if this enhances the
method further. Last but not least, the approach
could be tested in other low-resource settings such as
underrepresented on the Web languages different
from Ukrainian.

REFERENCES:
[1] Devlin J, Chang MW, Lee K, Toutanova K. Bert:

Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805. 2018 Oct 11.

 [2] Zhu Y, Kiros R, Zemel R, Salakhutdinov R,
Urtasun R, Torralba A, Fidler S. Aligning books
and movies: Towards story-like visual
explanations by watching movies and reading
books. InProceedings of the IEEE international
conference on computer vision 2015 (pp. 19-27).

[3] Harris ZS. Distributional structure. Word. 1954
Aug 1;10(2-3):146-62.

[4] Luhn HP. A statistical approach to mechanized
encoding and searching of literary information.
IBM Journal of research and development. 1957
Oct;1(4):309-17.

[5] Mikolov T, Chen K, Corrado G, Dean J. Efficient
estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781. 2013 Jan
16.

[6] Bengio Y, Ducharme R, Vincent P, Janvin C. A
neural probabilistic language model. The journal
of machine learning research. 2003 Mar
1;3:1137-55.

[7] Xing C, Wang D, Zhang X, Liu C. Document
classification with distributions of word vectors.
InSignal and Information Processing Association
Annual Summit and Conference (APSIPA),
2014 Asia-Pacific 2014 Dec 9 (pp. 1-5). IEEE.

Journal of Theoretical and Applied Information Technology
15th January 2022. Vol.100. No 1

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

80

[8] Hedderich MA, Lange L, Adel H, Strötgen J,
Klakow D. A survey on recent approaches for
natural language processing in low-resource
scenarios. arXiv preprint arXiv:2010.12309.
2020 Oct 23.

[9] Perez L, Wang J. The effectiveness of data
augmentation in image classification using deep
learning. arXiv preprint arXiv:1712.04621. 2017
Dec 13.

[10] Mintz M, Bills S, Snow R, Jurafsky D. Distant
supervision for relation extraction without
labeled data. InProceedings of the Joint
Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP
2009 Aug (pp. 1003-1011).

[11] Karamanolakis G, Mukherjee S, Zheng G,
Hassan A. Self-Training with Weak Supervision.
InProceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies 2021 Jun (pp. 845-863).

[12] Kumar V, Choudhary A, Cho E. Data
Augmentation using Pre-trained Transformer
Models. InProceedings of the 2nd Workshop on
Life-long Learning for Spoken Language
Systems 2020 Dec (pp. 18-26).

[13] Eykens J, Guns R, Engels T. Clustering social
sciences and humanities publications: Can word
and document embeddings improve cluster
quality?. InProceedings of the 18th conference of
the International Society for Scientometrics and
Informetrics 2021 (Vol. 1, pp. 369-374).

[14] Wei J, Zou K. Eda: Easy data augmentation
techniques for boosting performance on text
classification tasks. arXiv preprint
arXiv:1901.11196. 2019 Jan 31.

[15] Yamada I, Asai A, Sakuma J, Shindo H, Takeda
H, Takefuji Y, Matsumoto Y. Wikipedia2Vec:
An Efficient Toolkit for Learning and
Visualizing the Embeddings of Words and
Entities from Wikipedia. InProceedings of the
2020 Conference on Empirical Methods in
Natural Language Processing: System
Demonstrations 2020 Oct (pp. 23-30).

[16] Harris R. Synonymy and linguistic analysis.
University of London, School of Oriental and
African Studies (United Kingdom); 1970.

[17] Yan S, Xu D, Zhang B, Zhang HJ. Graph
embedding: A general framework for
dimensionality reduction. In2005 IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR'05) 2005
Jun 20 (Vol. 2, pp. 830-837). IEEE.

[18] Goyal P, Ferrara E. Graph embedding
techniques, applications, and performance: A
survey. Knowledge-Based Systems. 2018 Jul
1;151:78-94.

[19] Grover A, Leskovec J. node2vec: Scalable
feature learning for networks. InProceedings of
the 22nd ACM SIGKDD international
conference on Knowledge discovery and data
mining 2016 Aug 13 (pp. 855-864).

[20] Grohe M. word2vec, node2vec, graph2vec,
x2vec: Towards a theory of vector embeddings
of structured data. InProceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems 2020 Jun 14
(pp. 1-16).

[21] Zhang C, Yang Z, He X, Deng L. Multimodal
intelligence: Representation learning,
information fusion, and applications. IEEE
Journal of Selected Topics in Signal Processing.
2020 Apr 15;14(3):478-93.

[22] Kyiv City electronic petitions. Retrieved from:
https://petition.kyivcity.gov.ua/ (September 06,
2020).

[23] Usage statistics of content languages for
websites. Retrieved from:
https://w3techs.com/technologies/overview/cont
ent_language (October 5, 2021).

[24] Joulin A, Grave E, Bojanowski P, Mikolov T.
Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759. 2016 Jul 6.

[25] Joulin A, Grave E, Bojanowski P, Douze M,
Jégou H, Mikolov T. Fasttext. zip: Compressing
text classification models. arXiv preprint
arXiv:1612.03651. 2016 Dec 12.

[26] Dictionary of synonyms on the Official website
of the Ukrainian Language. Retrieved from:
https://ukrainskamova.com/ (June 15, 2021).

[27] Kingma DP, Ba J. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980. 2014 Dec 22.

[28] De Amorim RC, Hennig C. Recovering the
number of clusters in data sets with noise
features using feature rescaling factors.
Information sciences. 2015 Dec 10;324:126-45.

[29] Ester M, Kriegel HP, Sander J, Xu X. A density-
based algorithm for discovering clusters in large
spatial databases with noise. Inkdd 1996 Aug 2
(Vol. 96, No. 34, pp. 226-231).

[30] Zhu C, Cheng Y, Gan Z, Sun S, Goldstein T, Liu
J. FreeLB: Enhanced Adversarial Training for
Natural Language Understanding.
InInternational Conference on Learning
Representations 2019 Sep 25.

